weka的参数使用

摘要: 最 常用的组件(components)是: l Instances 你的数据 l Filter 对数据的预处理 l Classifiers/Clusterer 被建立在预处理的数据上,分类/聚类 l Evaluating 评价classifier/clusterer l Attribute sel ...


最常用的组件(components)是:
l Instances 你的数据
l Filter 对数据的预处理
l Classifiers/Clusterer 被建立在预处理的数据上,分类/聚类
l Evaluating 评价classifier/clusterer
l Attribute selection 去除数据中不相关的属性
下面将介绍如果在你自己的代码中使用WEKA ,其中的代码可以在上面枉址的尾部找到。
Instances
ARFF文件
3.5.5和3.4.X版本
从ARFF文件中读取是一个很直接的
import weka .core.Instances;
import java.io.BufferedReader;
import java.io.FileReader;
...
Instances data = new Instances(
new BufferedReader(
new FileReader("/some/where/data.arff")));
// setting class attribute
data.setClassIndex(data.numAttributes() - 1);
Class Index是指示用于分类的目标属性的下标。在ARFF文件中,它被默认为是最后一个属性,这也就是为什么它被设置成numAttributes-1.
你必需在使用一个Weka 函数(ex: weka .classifiers.Classifier.buildClassifier(data))之前设置Class Index。
3.5.5和更新的版本
DataSource类不仅限于读取ARFF文件,它同样可以读取CSV文件和其它格式的文件(基本上Weka 可以通过它的转换器(converters)导入所有的文件格式)。
import weka .core.converters.ConverterUtils.DataSource;
...
DataSource source = new DataSource("/some/where/data.arff");
Instances data = source.getDataSet();
// setting class attribute if the data format does not provide this
//information
// E.g. the XRFF format saves the class attribute information as well
if (data.classIndex() == -1)
data.setClassIndex(data.numAttributes() - 1);
数据库
从数据库中读取数据稍微难一点,但是仍然是很简单的,首先,你需要修改你的DatabaseUtils.props(自 己看一下原文,基本上都有链接)重组(resemble)你的数据库连接。比如,你想要连接一个MySQL服务器,这个服务器运行于3306端口(默 认),MySQL JDBC驱动被称为Connector/J(驱动类是org.gjt.mm.mysql.Driver)。假设存放你数据的数据库是 some_database。因为你只是读取数据,你可以用默认用户nobody,不设密码。你需要添加下面两行在你的props文件中:
jdbcDriver=org.gjt.mm.mysql.Driver
jdbcURL=jdbc:mysql://localhost:3306/some_database
其次,你的读取数据的Java代码,应该写成下面这样:
import weka .core.Instances;
import weka .experiment.InstanceQuery;
...
InstanceQuery query = new InstanceQuery();
query.setUsername("nobody");
query.setPassword("");
query.setQuery("select * from whatsoever");
// if your data is sparse then you can say so too
// query.setSparseData(true);
Instances data = query.retrieveInstances();
注意:
l 别忘了把JDBC驱动加入你的CLASSPATH中
l 如果你要用MS Access,你需要用JDBC-ODBC-bridge,它是JDK的一部分。
参数设置(Option handling)
Weka 中实现了weka .core.OptionHandler接口,这个接口为比如classifiers,clusterers,filers等提供了设置,获取参数的功能,函数如下:
l void setOptions(String[] Options)
l String[] getOptions()
下面伊次介绍几种参数设置的方法:
l 手工建立一个String数组
String[] options = new String[2];
options[0] = "-R";
options[1] = "1";
l 用weka .core.Utils类中的函数splitOptions将一个命令行字符串转换成一下数组
String[] options = weka .core.Utils.splitOptions("-R 1");
l 用OptionsToCode.java类自动将一个命令行转换成代码,对于命令行中包含nested classes,这些类又有它们自己的参数,如果SMO的核参数这种情况很有帮助。
java OptionsToCode weka .classifiers.functions.SMO
将产生以下输出:
//create new instance of scheme
weka .classifiers.functions.SMO scheme = new
weka .classifiers.functions.SMO();
// set options
scheme.setOptions(weka .core.Utils.splitOptions("-C 1.0 -L 0.0010 -P
1.0E-12 -N 0 -V -1 -W 1 -K \"
weka .classifiers.functions.supportVector.PolyKernel -C -E
1.0\""));
并且,OptionTree.java工具可以使你观察一个nested参数字符串。
Filter
一个filter有两种不同的属性
l 监督的或是监督的(supervised or unsupervised)
是否受用户控制
l 基于属性的或是基于样本的(attribute- or instance-based)
比如:删除满足一定条件的属性或是样本
多数filters实现了OptionHandler接口,这意味着你可以通过String数组设置参数,而不用手工地用set-方法去伊次设置。比如你想删除数据集中的第一个属性,你可用这个filter。
weka .
通过设置参数

-R 1
如果你有一个Instances对象,比如叫data,你可以用以下方法产生并使用filter:
import weka .core.Instances;
import weka .filters.Filter;
import weka .filters.unsupervised.attribute.Remove;
...
String[] options = new String[2];
options[0] = "-R"; // "range"
options[1] = "1"; // first attribute
Remove remove = new Remove(); // new instance of filter
remove.setOptions(options); // set options
// inform filter about dataset //**AFTER** setting options
remove.setInputFormat(data);
Instances newData = Filter.useFilter(data remove); // apply filter
运行中过滤(Filtering on-the-fly)
FilteredClassifier meta-classifier是一种运行中过滤的方式。它不需要在分类器训练之前先对数据集过滤。并且,在预测的时候,你也不需要将测试数据集再次过滤。下面的例子中使用meta-classifier with Remove filter和J48,删除一个attribute ID为1的属性。
import weka .core.Instances;
import weka .filters.Filter;
import weka .filters.unsupervised.attribute.Remove;
...
String[] options = new String[2];
options[0] = "-R"; // "range"
options[1] = "1"; // first attribute
Remove remove = new Remove(); // new instance of filter
remove.setOptions(options); // set options
// inform filter about dataset **AFTER** setting options
remove.setInputFormat(data);
Instances newData = Filter.useFilter(data remove); // apply filter
import weka .classifiers.meta.FilteredClassifier;
import weka .classifiers.trees.J48;
import weka .filters.unsupervised.attribute.Remove;
...
Instances train = ... // from somewhere
Instances test = ... // from somewhere
// filter
Remove rm = new Remove();
rm.setAttributeIndices("1"); // remove 1st attribute
// classifier
J48 j48 = new J48();
j48.setUnpruned(true); // using an unpruned J48
// meta-classifier
FilteredClassifier fc = new FilteredClassifier();
fc.setFilter(rm);
fc.setClassifier(j48);
// train and make predictions
fc.buildClassifier(train);
for (int i = 0; i < test.numInstances(); i++)
其它Weka 中便利的meta-schemes:
weka .clusterers.FilteredClusterer (since 3.5.4)
weka .associations.FilteredAssociator (since 3.5.6)
批过滤(Batch filtering)
在 命令行中,你可以用-b选项enable第二个input/ouput对,用对第一个数据集过滤的设置来过滤第二个数据集。如果你正使用特征选择 (attribute selection)或是正规化(standardization),这是必要的,否则你会得到两个不兼容的数据集。其实这做起来很容易,只需要用 setInputFormat(Instances)去初始化一个过滤器,即用training set,然后将这个过滤器伊次用于training set和test set。下面的例子将展示如何用Standardize过滤器过滤一个训练集和测试集的。
Instances train = ... // from somewhere
Instances test = ... // from somewhere
// initializing the filter once with training set
Standardize filter = new Standardize();
filter.setInputFormat(train);
// configures the Filter based on train instances and returns filtered
//instances
Instances newTrain = Filter.useFilter(train filter);
// create new test set
Instances newTest = Filter.useFilter(test filter);
调用转换(Calling conventions)
setInputFormat(Instances) 方法总是必需是应用过滤器时晤后一个调用,比如用Filter.useFilter(InstancesFilter)。为什么?首先,它是使用过滤器的 转换,其实,很多过滤器在setInputFormat(Instances)方法中用当前的设置参数产生输出格式(output format)(在这个调用后设置参数不再有任何作用)。
分类(classification)
一些必要的类可以在下面的包中找到:
weka .
建立一个分类器(Build a classifier)
批(Batch)
在一个给定的数据集上训练一个Weka
分类器是非常简单的事。例如,我们可以训练一个C4.5树在一个给定的数据集data上。训练是通过buildClassifier(Instances)来完成的。
import weka .classifiers.trees.J48;
...
String[] options = new String[1];
options[0] = "-U"; // unpruned tree
J48 tree = new J48(); // new instance of tree
tree.setOptions(options); // set the options
tree.buildClassifier(data); // build classifier
增量式(Incremental)
实现了weka .classifiers.UpdateabeClassifier接口的分类器可以增量式的训练,它可以节约内存,因为你不需要半冽据一次全部读入内存。你可以查一下文档,看哪些分类器实现了这个接口。
真正学习一个增量式的分类器是很简单的:
l 调用buildClassifier(Instances),其中Instances包话这种数据集的结构,其中Instances可以有数据,也可以没有。
l 顺序调用updateClassifier(Instances)方法,通过一个新的weka .core.Instances,更新分类器。
这里有一个用weka .core.converters.ArffLoader读取数据,并用weka .classifiers.bayes.NaiveBayesUpdateable训练分类器的例子。
// load data
ArffLoader loader = new ArffLoader();
loader.setFile(new File("/some/where/data.arff"));
Instances structure = loader.getStructure();
structure.setClassIndex(structure.numAttributes() - 1);
// train NaiveBayes
NaiveBayesUpdateable nb = new NaiveBayesUpdateable();
nb.buildClassifier(structure);
Instance current;
while ((current = loader.getNextInstance(structure)) != null)
nb.updateClassifier(current);
Evaluating
交叉检验
如果你一个训练集并且没有测试集,你也话想用十次交叉检验的方法来评价分类器。这可以很容易地通过Evaluation类来实现。这勒醅我们用1作为随机种子进行随机选择,查看Evaluation类,可以看到更多它输出的统计结果。
import weka .classifiers.Evaluation;
import java.util.Random;
...
Evaluation eval = new Evaluation(newData);
eval.crossValidateModel(tree newData 10 new Random(1));
注 意:分类器(在这个例子中是tree)不应该在作为crossValidateModel参数之前训练,为什么?因为每当buildClassifier 方法被调用时,一个分类器必需被重新初始化(换句话说:接下来调用buildClassifier 方法总是返回相同的结果),你将得到不一致,没有任何意义的结果。crossValidateModel方法处理分类器的training和 evaluation(每一次cross-validation,它产生一个你作为参数的原分类器的复本(copy))。
Train/Set set
如果你有一个专用的测试集,你可以在训练集上训练一个分类器,再在测试集上测试。在下面的例子中,一个J48被实例化,训练,然后评价。在控制台输出一些统计值。
import weka .core.Instances;
import weka .classifiers.Evaluation;
import weka .classifiers.trees.J48;
...
Instances train = ... // from somewhere
Instances test = ... // from somewhere
// train classifier
Classifier cls = new J48();
cls.buildClassifier(train);
// evaluate classifier and print some statistics
Evaluation eval = new Evaluation(train);
eval.evaluateModel(cls test);
System.out.println(eval.toSummaryString("\nResults\n======\n"
false));
统计(statistics)
下面是一些获取评价结果的方法
l 数值型类别
? Correct() 分类正确的样本数 (还有incorrect() )
? pctCorrect() 分类正确的百分比 (还有pctIncorrect())
? kappa() Kappa statistics
l 离散型类别
? correlationCoefficient() 相关系数
l 通用
? meanAbsoluteError() 平均绝对误差
? rootMeanSquaredError() 均方根误差
? unclassified() 未被分类的样本数
? pctUnclassified() 未被分类的样本百分比
如果你想通过命令行获得相同的结果,使用以下方法:
import weka .classifiers.trees.J48;
import weka .classifiers.Evaluation;
...
String[] options = new String[2];
options[0] = "-t";
options[1] = "/some/where/somefile.arff";
System.out.println(Evaluation.evaluateModel(new J48() options));
ROC 曲线/AUC(ROC curves/AUC)
从Weka 3.5.1开始,你可以在测试中产生ROC曲线/AUC。你可以调用Evaluation类中的predictions()方法去做。你可从Generating Roc curve这篇文章中找到许多产生ROC曲线的例子。
分类样本(classifying instances)
如 果你想用你新训练的分类器去分类一个未标记数据集(unlabeled dataset),你可以使用下面的代码段,它从/some/where/unlabeled.arff中读取数据,并用先前训练的分类器tree去标记 样本,并保存标记样本在/some/where/labeled.arff中
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import weka .core.Instances;
...
// load unlabeled data
Instances unlabeled = new Instances(
new BufferedReader(
new FileReader("/some/where/unlabeled.arff")));

// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);

// create copy
Instances labeled = new Instances(unlabeled);

// label instances
for (int i = 0; i < unlabeled.numInstances(); i++)
// save labeled data
BufferedWriter writer = new BufferedWriter(
new FileWriter("/some/where/labeled.arff"));
writer.write(labeled.toString());
writer.newLine();
writer.flush();
writer.close();
数值型类别注意事项
l 如果你对所有类别在分布感兴趣,那么使用distributionForInstance(Instance)。这个方法返回一个针对每个类别概率的double数组。
l classifyInstance返回的是一个double值(或者是distributionForInstance返回的数组中的下标),它仅仅是属性的下标,例如,如果你想用字符串形式来表现返回的类别结果clsLabel,你可以这样输出:
System.out.println(clsLabel + " -> " +
unlabeled.classAttribute().value((int) clsLabel));
聚类(Clustering)
聚类与分类相似,必要的类可以在下面的包中找到
weka .clusterers
建立一个Clusterer
批(Batch)
一 个clusterer建立与建立一个分类器的方式相似,只是不是使用buildClassifier(Instances)方法,它使用 buildClusterer(Instances),下面的代码段展示了如何用EM clusterer使用最多100次迭代的方法。
import weka .clusterers.EM;
...
String[] options = new String[2];
options[0] = "-I"; // max. iterations
options[1] = "100";
EM clusterer = new EM(); // new instance of clusterer
clusterer.setOptions(options); // set the options
clusterer.buildClusterer(data); // build the clusterer
增量式
实现了weka .clusterers.UpdateableClusterer接口的Clusterers可以增量式的被训练(从3.5.4版开始)。它可以节省内存,因为它不需要一次性将数据全部读入内存。查看文档,看哪些clusterers实现了这个接口。
真正训练一个增量式的clusterer是很简单的:
l 调用buildClusterer(Instances) 其中Instances包话这种数据集的结构,其中Instances可以有数据,也可以没有。
l 顺序调用updateClusterer(Instances)方法,通过一个新的weka .core.Instances,更新clusterer。
l 当全部样本被处理完之后,调用updateFinished(),因为clusterer还要进行额外的计算。
下面是一个用weka .core.converters.ArffLoader读取数据,并训练weka .clusterers.Cobweb的代码:
//load data
ArffLoader loader = new ArffLoader();
loader.setFile(new File("/some/where/data.arff"));
Instances structure = loader.getStructure();

// train Cobweb
Cobweb cw = new Cobweb();
cw.buildClusterer(structure);
Instance current;
while ((current = loader.getNextInstance(structure)) != null)
cw.updateClusterer(current);
cw.updateFinished();
评价(Evaluating)
评价一个clusterer,你可用ClusterEvaluation类,例如,输出聚了几个类:
import weka .clusterers.ClusterEvaluation;
import weka .clusterers.Clusterer;
...
ClusterEvaluation eval = new ClusterEvaluation();
// new clusterer instance default options
Clusterer clusterer = new EM();
clusterer.buildClusterer(data); // build clusterer
eval.setClusterer(clusterer); // the cluster to evaluate
// data to evaluate the clusterer on
eval.evaluateClusterer(newData);
// output # of clusters
System.out.println("# of clusters: " + eval.getNumClusters());
在density based clusters这种情况下,你可用交叉检验的方法去做(注意:用MakeDensitybasedClusterer你可将任何clusterer转换成一下基于密度(density based)的clusterer)。
import weka .clusterers.ClusterEvaluation;
import weka .clusterers.DensitybasedClusterer;
import java.util.Random;
...
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer); // the clusterer to evaluate
eval.crossValidateModel( // cross-validate
clusterer newData 10 // with 10 folds
new Random(1)); // and random number generator with seed 1
如果你想用命令行方式得到相同的结果,用以下方法:
import weka .clusterers.EM;
import weka .clusterers.ClusterEvaluation;
...
String[] options = new String[2];
options[0] = "-t";
options[1] = "/some/where/somefile.arff";
System.out.println(ClusterEvaluation.evaluateClusterer(new EM()
options));
聚类数据集(Clustering instances)
与分类唯一不同是名字不同。它不是用classifyInstances(Instance),而是用clusterInstance(Instance)。获得分布的方法仍然是distributionForInstance(Instance)。
Classes to cluster evaluation
如果你的数据包含一个类别属性,并且你想检查一下产生的clusters与类别吻合程度,你可进行所谓的classes to clusters evaluation。Weka Exporer提供了这个功能,并用它也很容易实现,下面是一些必要的步骤。
l 读取数据,设置类别属性下标
Instances data = new Instances(new BufferedReader(new
FileReader("/some/where/file.arff")));
data.setClassIndex(data.numAttributes() - 1);
l 产生无类别的数据,并用下面代码训练
weka .filters.unsupervised.attribute.Remove filter = new
eka.filters.unsupervised.attribute.Remove();
filter.setAttributeIndices("" + (data.classIndex() + 1));
filter.setInputFormat(data);
Instances dataClusterer = Filter.useFilter(data filter);
l 学习一个clusterer,比如EM
EM clusterer = new EM();
// set further options for EM if necessary...
clusterer.buildClusterer(dataClusterer);
l 用仍然包含类别属性的数据集评价这个clusterer
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
eval.evaluateClusterer(data)
l 输出评价结果
System.out.println(eval.clusterResultsToString());
属性选择(Attribute selection)
其实没有必要在你的代码中直接使用属性选择类,因为已经有meta-classifier和filter可以进行属性选择,但是为了完整性,底层的方法仍然被列出来了。下面就是用CfsSubsetEVal和GreedStepwise方法的例子。
meta-Classifier
下面的meta-classifier在数据在传给classifier之前,进行了一个预外理的步骤:
Instances data = ... // from somewhere
AttributeSelectedClassifier classifier = new
AttributeSelectedClassifier();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
J48 base = new J48();
classifier.setClassifier(base);
classifier.setEvaluator(eval);
classifier.setSearch(search);
// 10-fold cross-validation
Evaluation evaluation = new Evaluation(data);
evaluation.crossValidateModel(classifier data 10 new Random(1));
System.out.println(evaluation.toSummaryString());
Filter
过滤器方法是很直接的,在设置过滤器之后,你就可以通过过滤器过滤并得到过滤后的数据集。
Instances data = ... // from somewhere
AttributeSelection filter = new AttributeSelection();
// package weka .filters.supervised.attribute!
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值