机器学习EDA探查工具Pandas profiling

在最初的数据探查的时候,可以通过pandas的函数,以及matplotlib做图像绘图,这个工作比较重复和低效,所以pandas针对常用的数据列统计和展示,做了EDA工具profiling,可以自动帮助数据分析。

问题1:在python 3.10.11环境下,安装pip install pandas-profiling,运行出现错误

pydantic.errors.PydanticImportError: `BaseSettings` has been moved to the `pydantic-settings` package.

因为profiling版本更新问题,暂时没有去解决。

问题2:升级profiling版本,名称从pandas-profiling变换为ydata_profiling,运行出错

AttributeError: module 'numba' has no attribute 'generated_jit'

判定,仍然是版本冲突。解决方案:

pip uninstall numba

pip install numba

安装出现错误:

 requires joblib<1.4,>=1.2.0, but you have joblib 1.4.2 which is incompatible.
sktime 0.26.0 requires scikit-learn<1.5.0,>=0.24, but you have scikit-learn 1.5.2 which is incompatible.

解决方案:卸载掉scikit-learn,joblib等,然后执行安装

pip install ydata-profiling

会自动安装需要的scikit-learn依赖,最后运行得到HTML文件。

 

 profiling的使用

import pandas as pd
from ydata_profiling import ProfileReport

df = pd.read_csv('dataset/listings-2.csv')
original_report = ProfileReport(df, title='Original Data')
original_report.to_file("original_report.html")

根据显示,对数据处理后可以做对比查看

transformed_report = ProfileReport(df_transformed, title="Transformed Data")
comparison_report = original_report.compare(transformed_report)
comparison_report.to_file("original_vs_transformed.html")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值