算法设计笔记(三)货郎问题与计算复杂性理论

本文探讨了货郎问题的建模及其与0-1背包问题、双机调度问题的关联。这些问题在没有有效算法解决的情况下,被归类为NP难问题。通过对目标函数的分析,阐述了寻找最优解的挑战。
摘要由CSDN通过智能技术生成

能不能有效计算的临界问题
问题简述
在这里插入图片描述
如下红色路线就是本题的解
在这里插入图片描述
对货郎问题进行建模
在这里插入图片描述
从城市C1到C2的距离加上从Ck2到Ck3的距离,一直加到Ck(n-1)到达Cnk城市的距离,再加上从第n个城市回到第n个城市的距离。
这就是在所有城市的排列下,长度的总和,而我们的求解即为此长度达到最小的排列。
红框中为我们的目标函数
然而,到现在为止还没有有效的算法

另一个 “0-1背包”问题
在这里插入图片描述
希望找到最好的装法在这里插入图片描述
问题的解是一个0-1向量:若X1=1那么X1装入背包,若X1=0那么X1不装入背包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值