算法设计笔记(一)调度问题之“贪心算法”

本文探讨了贪心算法在调度问题中的应用,通过一个例子展示了如何按照加工时间从小到大排序任务以求得总完成时间最短的安排。同时,也分析了贪心算法的正确性和局限性,通过一个反例说明贪心算法并不总是能得到全局最优解,例如在背包问题中,单纯考虑单位重量价值最大的物品并不一定能得出最大总价值的解决方案。
摘要由CSDN通过智能技术生成

例1:调度问题有n 项任务,每项任务加工时间已知,从0时刻开始陆续安排到一台机器上,加工每个任务的完成时间是从0 时刻到任务加工截止的时间,求: 总完成时间(所有任务完成时间之和)最短的安排方案

在这里插入图片描述
贪心算法:按照加工时间(3,5,8,10,15)从小到大安排
分别对应任务1,3,2,4,5,每个任务完成的时间计算都是从0时刻开始到该任务完成结束为止,所以可以得到以下总时间t的计算
在这里插入图片描述
接着对这个问题进行建模
输入:任务集:s={1,2…,n},第j项任务加工时间:
在这里插入图片描述
输出:调度I,S的排列
在这里插入图片描述
目标函数:I的完成时间,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值