简述
在之前的文章中有详细描述过基于JDK7中HashMap与HashTable的差异,而在JDK8出现后,HasMap在实现上有了很大的变化。有所耳闻的就是里面出现了红黑树结构,而且效率更高了。接下来就通过JDK8种HasMap的源码实现来分析其中的变化。
HashMap内部类变化
JDK7中hashMap用来存储真正的Key-Value键值对只有一个Entry的内部类:
//JDK7
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
.......
}
JDK8中变成了Node和TreeNode内部类:
//JDK8
//Node内部类
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
.......
}
//JDK8
//TreeNode内部结构(红黑树)
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
......
}
为什么这里会变成了Node和TreeNode,会在HashMap扩容的时候详细说明。
内部结构图:
put操作
JDK7中HashMap的put操作很简单,put一个value时,通过hash计算,找到对应的数组位置,然后在链表尾部插入这个value。
//JDK7中put操作
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);//针对控制的put操作
int hash = hash(key);
int i = indexFor(hash, table.length);//找到插入的位置
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
//如果插入位置已经存在值,则替换为新插入的值
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);//插入新value操作
return null;
}
而在JDK8中put操作就有了许多变化了,比如判断是插入链表还是插入红黑树、从链表裂变成红黑树结构等。
//JDK8中put操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//putVal方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果table还未初始化,则调用resize()方法初始化
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//根据key的hash值,找到对应的数组索引,若为null,则该索引位置未被占用过
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {//若该索引对应的数组位置不为null
Node<K,V> e; K k;
//当前节点和要插入的节点,key和key的hash值都相同,则是一次替换value的操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果当前节点是红黑树的节点,则以红黑树的形式插入
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {//排除以上两个条件后,则通过遍历链表的方式,进行插入
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果插入后链表长度大于等于 8 ,将链表裂变成红黑树
//TREEIFY_THRESHOLD = 8;
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//遍历的过程中,如果发现与某个结点的 hash和key,这依然是一次修改操作
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//e 不是 null,说明当前的 put 操作是一次修改操作并且e指向的就是需要被修改的结点
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//插入完成后,当前容量如果大于了阈值,则进行扩容处理
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
resize操作
JDK7中的HashMap,无论put了多少值进入都不会让其数据结构发生变化,所以resize操作就是简单的根据是否达到了阈值,或者是否达到了当前容量最大值,然后进行扩容。
//JDK7
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
//loadFactor负载因子0.75f
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
而在JDK8中,当新的value插入后,链表长度大于等于 8 ,将链表裂变成红黑树,所以这里resize就相对复杂一些了,同时hashmap初始化结构的时候,也是用的resize方法。
//JDK8
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//当达到极限容量时,则不允许扩容了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//未达到极限,将数组容量扩大两倍,阈值也扩大两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//1.老数组中没有任何元素
//2.构造map时,指定了初始化容量
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else {
//采用无参构造函数构造的map,并且第一次添加新元素
// zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//使用默认值初始化数组容量
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//newCap = oldThr 之后并没有计算阈值,所以 newThr = 0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据新的容量初始化一个数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {//如果旧数组不为 null,这次的 resize 是一次扩容行为
for (int j = 0; j < oldCap; ++j) {//将旧数组中的每个节点位置相对静止地拷贝值新数组中
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {//遍历链表
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
//不论扩容还是初始化,都可以返回 newTab
return newTab;
}
代码中 if ((e.hash & oldCap) == 0) 判断
注意:不是(e.hash & (oldCap-1));而是(e.hash & oldCap)
(e.hash & oldCap) 得到的是 元素的在数组中的位置是否需要移动,示例如下
示例1:
e.hash=10 0000 1010
oldCap=16 0001 0000
& = 0 0000 0000 比较高位的第一位 0
结论:元素位置在扩容后数组中的位置没有发生改变
示例2:
e.hash=17 0001 0001
oldCap=16 0001 0000
& = 1 0001 0000 比较高位的第一位 1
结论:元素位置在扩容后数组中的位置发生了改变,新的下标位置是原下标位置+原数组长度
(e.hash & (oldCap-1)) 得到的是下标位置,示例如下
e.hash = 10 0000 1010
oldCap-1=15 0000 1111
& = 10 0000 1010
e.hash =17 0001 0001
oldCap-1=15 0000 1111
& =1 0000 0001
新下标位置
e.hash = 17 0001 0001
newCap-1=31 0001 1111 newCap=32
& =17 0001 0001 1+oldCap = 1+16
//元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
//参考博文:[Java8的HashMap详解](https://blog.csdn.net/login_sonata/article/details/76598675)
// 0000 0001->0001 0001
get操作
JDK7中的get操作就是去链表中相应位置找寻key对应的值
//JDK7
public V get(Object key) {
if (key == null)
//如果是获取key是null的值
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
//私有方法,对key为null进行处理
private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//获取结构中的Entry实例
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
JDK8中则多了去寻找红黑树的节点。
//JDK8
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//先判断数组是否为空,长度是否大于0,那个node节点是否存在
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//如果找到,直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果是红黑树,去红黑树找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//查找表
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
总结
JDK8中旧链表迁移新链表,链表元素相对位置没有变化; 实际是对对象的内存地址进行操作
在JDK7中旧链表迁移新链表,如果在新表的数组索引位置相同,则链表元素会倒置。
JDK8中的HashMap虽然有了很大变化,但它依然还是线程不安全的,所以在平常使用时,可能会感觉不到它的变化,但知道其内部原理后,在处理多少数据量的时候选用hashMap来存储就有了更清晰的认识。