机械臂坐标系变换----极简总结

之前已经学过了机械臂的坐标变换,只是大概知道向量的变换,齐次坐标表示的思想等,并没有对公式扣细节,后来发现有的时候在想问题的时候还是容易迷糊。这里就做一个极简单的总结。

需要说明的是,坐标全部按右手系规则进行。

比如,已被人熟知的齐次坐标变换如下:

关键是理解其中的变换矩阵T^{W}_{B},表示从B坐标系到W坐标系的变换矩阵(注意:是齐次变换矩阵哦)其形式为:

迷糊的地方在于:

1.一般叙述通常会说 R^{W}_{B},代表从坐标系B到坐标系W的姿态旋转变换矩阵,这个矩阵的纵坐标其实就是B中的单位坐标系向量(比如:B坐标系的x轴(1,0)与y轴(0,1))在W坐标系中的表示

这里要说明的是R^{W}_{B}与 的关系,即: 的行向量是W中单位坐标向量在B坐标系中的表示,因而:

R^{W}_{B} = (R^{B}_{W})^T

同时,该矩阵还满足:

R^{W}_{B} = (R^{B}_{W})^T = (R^{B}_{W})^{-1}

也就是说旋转矩阵是正交阵。

但是实操中,“使用的旋转矩阵,把谁变换到世界坐标(W),就把谁的坐标向量写成世界坐标的表示,并作为列向量的矩阵”。

2. \vec{t^{W}_{WB}}表示,在W坐标系下 ,以W坐标系的原点为起点,以B坐标系的原点为终点的向量,实际计算是以B坐标系原点坐标值减去W坐标系原点坐标值计算而来。

值得一提的是,放到变换矩阵中,T^{W}_{B} = \begin{bmatrix} R & \vec{t} \\ 0& 1 \end{bmatrix}

假定旋转矩阵为单位阵(无旋转)有:

(这也是我感叹齐次坐标神奇之处,通过矩阵乘法与求逆完成了向量的加减!)

坐标间的变换矩阵满足:  T^{W}_B= (T^{B}_{W})^{-1}

总结起来,要完成从坐标系B中的点到坐标系W的变换,要计算1)B中单位坐标系向量在W中的表示作为列向量的矩阵(也就是“旋转矩阵”),2)计算在W坐标系下,以W坐标系原点为起点,B坐标系的原点为终点的向量;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chenxin0215

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值