一、LeetCode118题杨辉三角形
1.1 题目描述
给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。
在杨辉三角中,每个数是它左上方和右上方的数的和。
示例:
输入: 5 输出:
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
1.2 解题思路
- 其实
vector<vector <int>>
的底层结构如下图所示,我们可以将其看做是一个二维数组,因为vector支持下标访问,我们可以将其看做一个二维数组来初始化 - 首先我们将所有位置的值都置为0,再将每个里面vector的第一个和最后一个的值置为1,然后就可以检查数组中为0的位置的值等于其上层两个数之和,就初始化完成一个杨辉三角形了
1.3 代码实现
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> vv;//相当于创建了一个二维数组,一个vector里面存着一个vector
vv.resize(numRows);//为第一个vector开空间
for (size_t i = 0; i < vv.size(); ++i)
{
vv[i].resize(i + 1, 0);//为存在vv中的vector开辟空间,并把所有值置成0
vv[i][0] = 1;
vv[i][vv[i].size() - 1] = 1;
}
//重新遍历一遍vector,找到为0的位置
for (size_t i = 0; i < vv.size(); ++i)
{
for (size_t j = 0; j < vv[i].size(); ++j)
{
if (vv[i][j] == 0)
{
vv[i][j] = vv[i - 1][j - 1] + vv[i - 1][j];
}
}
}
return vv;
}
};
二、LeetCode119题杨辉三角形II
2.1 题目描述
给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。
在杨辉三角中,每个数是它左上方和右上方的数的和。
示例:
输入: 3
输出: [1,3,3,1]
2.2 解题思路
- 思路很简单,因为我们有非负索引 k,通过k我们可以访问杨辉三角形上一层的数
- 首先将vector初始化为1,在从第二个位置开始到倒数第二个位置的值置为上一层两数相加之和,返回vector即可
2.3 代码实现
class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> Row(rowIndex+1, 1);//定义一个vector,将值全初始化为1
if (rowIndex == 0)
return Row;
for (int i=1; i < rowIndex+1; i++)
{
for (int j = i-1; j > 0; j--)
{
Row[j] = Row[j] + Row[j-1];
}
}
return Row;
}
};