Given an array of integers, every element appears twice except for one. Find that single one.
看这个题目时真心没想法,还是忍不住去看了答案== 用的是位运算符进行处理。代码如下:
class Solution {
public:
int singleNumber(int A[], int n)
{
int x = 0;
for(int i = 0; i < n; i++)
{
x = A[i]^x;
}
return x;
}
};
那么,顺便把运算符总结一下吧。一直以为位运算符只是用来简单的计算0和1,现在发现好多地方其实都用到了
参考来自morewindows的 详见提高篇
转载来自morewindows的博文
下面就先来对位操作作个全面总结,欢迎大家补充。
在计算机中所有数据都是以二进制的形式储存的。位运算其实就是直接对在内存中的二进制数据进行操作,因此处理数据的速度非常快。
在实际编程中,如果能巧妙运用位操作,完全可以达到四两拨千斤的效果,正因为位操作的这些优点,所以位操作在各大IT公司的笔试面试中一直是个热点问题。因此本文将对位操作进行如下方面总结:
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
四. 位操作的趣味应用,列举了位操作在高低位交换、二进制逆序、二进制中1的个数以及缺失的数字这4种趣味应用。
一. 位操作基础
基本的位操作符有与、或、异或、取反、左移、右移这6种,它们的运算规则如下所示:
符号 | 描述 | 运算规则 by MoreWindows |
& | 与 | 两个位都为1时,结果才为1 |
| | 或 | 两个位都为0时,结果才为0 |
^ | 异或 | 两个位相同为0,相异为1 |
~ | 取反 | 0变1,1变0 |
<< | 左移 | 各二进位全部左移若干位,高位丢弃,低位补0 |
>> | 右移 | 各二进位全部右移若干位,对无符号数,高位补0,有符号数,各编译器处理方法不一样,有的补符号位(算术右移),有的补0(逻辑右移) |
注意以下几点:
1. 在这6种操作符,只有~取反是单目操作符,其它5种都是双目操作符。
2. 位操作只能用于整形数据,对float和double类型进行位操作会被编译器报错。
3. 对于移位操作,在微软的VS2010编译器采取算术称位即算术移位操作,算术移位是相对于逻辑移位,它们在左移操作中都一样,低位补0即可,但在右移中逻辑移位的高位补0而算术移位的高位是补符号位。如下面代码会输出-4和3。
int i = -15,j = 15;
i >>= 2;
j >>= 2;
cout<<i<<endl;
cout<<j<<endl;
因为15=0000 1111(二进制),右移二位,最高位由符号位填充将得到0000 0011即3。-15 = 1111 0001(二进制),右移二位,最高位由符号位填充将得到1111 1100即-4。
4. 位操作符的运算优先级比较低,因为尽量使用括号来确保运算顺序,否则很可能会得到莫明其妙的结果。比如要得到像1,3,5,9这些2^i+1的数字。写成int a = 1 << i + 1;是不对的,程序会先执行i + 1,再执行左移操作。应该写成int a = (1 << i) + 1;
5. 另外位操作还有一些复合操作符,如&=、|=、 ^=、<<=、>>=。
二. 常用位操作小技巧
下面对位操作的一些常见应用作个总结,有判断奇偶、交换两数、变换符号及求绝对值。这些小技巧应用易记,应当熟练掌握。
1.判断奇偶
只要根据最未位是0还是1来决定,为0就是偶数,为1就是奇数。因此可以用if ((a & 1) == 0)代替if (a % 2 == 0)来判断a是不是偶数。
下面程序将输出0到100之间的所有奇数。
int a[7] = {1,2,3,4,5,6,7};
for(int i = 0; i < 7; ++i)
{
if((a[i] & 1) == 0)//注意在(a[i]&1)一定加上括号,输出偶数
{
cout<<a[i]<<"\t";
}
}
2.交换两数
交换两数正常有三种解法(都先假设a != b,故判断先省略掉):
void swap(int &a,int &b)//使用引用
{
int temp = a;
a = b;
b = temp;
}
void swap(int *a,int *b)//使用指针
{
int temp = *a;
*a = *b;
*b = temp;
}
int main()
{
int a = 1,b = 2;
swap(&a,&b);
cout<<a<<b;
return 0;
}
void swap(int &a,int &b)//使用减法
{
a = a + b;
b = a - b;
a = a - b;
}
以上是我们常规的想法,在这里再介绍一种使用位运算符进行交换。
void swap(int &a,int &b)//和使用减法差不多
{
a = a ^ b;
b = a ^ b;
a = a ^ b;
}
3.变换符号
变换符号就是正数变成负数,负数变成正数。
如对于-11和11,可以通过下面的变换方法将-11变成11
1111 0101(二进制) –取反-> 0000 1010(二进制) –加1-> 0000 1011(二进制)
同样可以这样的将11变成-11
0000 1011(二进制) –取反-> 0000 0100(二进制) –加1-> 1111 0101(二进制)
因此变换符号只需要取反后加1即可。完整代码如下:
//负数变正数,正数变负数
void change(int &a)
{
a = ~a + 1;
}
4.求绝对值
位操作也可以用来求绝对值,对于负数可以通过对其取反后加1来得到正数。对-6可以这样:
1111 1010(二进制) –取反->0000 0101(二进制) -加1-> 0000 0110(二进制)
来得到6。
因此先移位来取符号位,int i = a >> 31;要注意如果a为正数,i等于0,为负数,i等于-1。然后对i进行判断——如果i等于0,直接返回。否之,返回~a+1。完整代码如下:
int change(int &a)
{
int i = a>>31;
return a=(i== 0 ? a:(~a+1));
}
现在再分析下。对于任何数,与0异或都会保持不变,与-1即0xFFFFFFFF异或就相当于取反。因此,a与i异或后再减i(因为i为0或-1,所以减i即是要么加0要么加1)也可以得到绝对值。所以可以对上面代码优化下
//负数变正数,正数变负数
int change(int &a)
{
int i = a>>31;
return a=((a^i)-i);
}
注意这种方法没用任何判断表达式,而且有些笔面试题就要求这样做,因此建议读者记住该方法(^_^讲解过后应该是比较好记了)。
三. 位操作与空间压缩
筛素数法在这里不就详细介绍了,本文着重对筛素数法所使用的素数表进行优化来减小其空间占用。要压缩素数表的空间占用,可以使用位操作。下面是用筛素数法计算100以内的素数示例代码
void GetPrime_1()
{
int i, j;
pi = 0;
memset(flag,false,sizeof(flag));
for(i = 2; i < MAIN; i++)
{
if(!flag[i])
{
primes[pi++] = i;
for(j = i; j < MAIN; j += i)
{
flag[j] = true;
}
}
}
}
在上面程序是用bool数组来作标记的,bool型数据占1个字节(8位),因此用位操作来压缩下空间占用将会使空间的占用减少八分之七。
下面考虑下如何在数组中对指定位置置1,先考虑如何对一个整数在指定位置上置1。对于一个整数可以通过将1向左移位后与其相或来达到在指定位上置1的效果,代码如下所示:
int j = 0;
j |= 1 << 10;
cout<<j;
同样,可以1向左移位后与原数相与来判断指定位上是0还是1(也可以将原数右移若干位再与1相与)。
int j = 1<<10;
if((j &(1<<10)) != 0)
{
cout<<"指定位为1";
}
else
cout<<"指定位为0";