Gemini 1.5可以在Google AI Studio免费试用了

上周,我们在 Gemini Advanced 中发布了 Gemini 1.0 Ultra。您现在可以通过注册 Gemini Advanced 订阅来试用。可通过 Gemini API 访问的 1.0 Ultra 模型引起了人们的极大兴趣,并继续向 Google AI Studio中的部分开发人员和合作伙伴推出。

今天,我们也很高兴地推出我们的下一代 Gemini 1.5 模型,它使用新的专家混合 (MoE) 方法来提高效率。它将您的请求路由到一组较小的“专家”神经网络,以便响应更快、更高质量。

开发人员可以注册我们的 Gemini 1.5 Pro 个人预览版,这是我们的中型多模式模型,针对各种任务进行了优化。该模型具有一个新的、实验性的 100 万个令牌上下文窗口,并可在 Google AI Studio 中试用。Google AI Studio 是使用 Gemini 模型进行构建的最快方式,使开发人员能够轻松地将 Gemini API 集成到他们的应用程序中。它以 38+ 个国家和地区的 180 种语言提供

在今天之前,世界上公开可用的大型语言模型的最大上下文窗口是 200,000 个令牌。我们已经能够显著提高这一比例——持续运行多达 100 万个代币,实现了任何大规模基础模型中最长的上下文窗口。默认情况下,Gemini 1.5 Pro 将附带 128,000 个令牌上下文窗口,但今天的 Private Preview 将可以访问实验性的 100 万个令牌上下文窗口。

我们对更大的上下文窗口所带来的新可能性感到兴奋。您可以直接上传大型 PDF、代码库,甚至是冗长的视频作为 Google AI Studio 中的提示。然后,Gemini 1.5 Pro 将跨模态推理并输出文本。

1.上传多个文件并提出问题

我们增加了开发者上传多个文件(如 PDF)的功能,并在 Google AI Studio 中提出问题。更大的上下文窗口允许模型接收更多信息,使输出更加一致、相关和有用。有了这个 100 万令牌上下文窗口,我们已经能够一次性加载超过 700,000 字的文本。

 Gemini 1.5 Pro 可以从阿波罗 11 号 PDF 成绩单中的特定引文中找到并推理。

2.查询整个代码仓库

大型上下文窗口还可以对整个代码库进行深入分析,帮助 Gemini 模型掌握复杂的关系、模式和对代码的理解。开发人员可以直接从他们的计算机或通过 Google Drive 上传新的代码库,并使用该模型快速上手并了解代码。

Gemini 1.5 Pro 可以帮助开发人员在学习新代码库时提高工作效率。

3.添加完整视频

Gemini 1.5 Pro 还可以在长达 1 小时的视频中进行推理。当您附加视频时,Google AI Studio 会将其分解为数千帧(没有音频),然后您可以执行高度复杂的推理和解决问题的任务,因为 Gemini 模型是多模态的。

Gemini 1.5 Pro 可以跨视频和其他视觉输入执行推理和解决问题的任务。

开发人员使用 Gemini 模型进行构建的更多方式

除了为您带来最新的模型创新外,我们还让您更轻松地使用 Gemini 进行构建:

  • 易于调整。提供一组示例,您可以在几分钟内从 Google AI Studio 中自定义 Gemini 以满足您的特定需求。此功能将在未来几天内推出。
  • 新的开发人员表面。立即集成 Gemini API,在 Project IDX 的开发工作区中,或与我们新发布的 Google AI Dart SDK 集成 Gemini API,以构建新的 AI 驱动功能。
  • Gemini 1.0 Pro 的低价。我们还在更新 1.0 Pro 模型,该模型为许多 AI 任务提供了成本和性能的良好平衡。今天的稳定版本的文本输入价格比之前宣布的价格低 50%,输出价格低 25%。AI Studio 即将推出的即用即付计划即将推出。

自 12 月以来,各种规模的开发者一直在使用 Gemini 模型进行构建,我们很高兴能够在 Google AI Studio 中将前沿研究转化为早期开发者产品。由于大型上下文窗口功能的实验性质,预计此预览版会出现一些延迟,但随着我们继续微调模型并获得您的反馈,我们很高兴开始分阶段推出。我们希望您像我们一样尽早尝试它。

### 关于Gemini 1.5 Flash的技术文档下载、配置与使用教程 目前关于Gemini 1.5 Flash的具体技术文档尚未公开全面的独立章节,但可以通过以下方式获取相关资源并完成配置: #### 1. **API_KEY申请流程** 为了使用Gemini的相关功能,需先通过官方渠道申请API_KEY。此过程通常涉及注册开发者账号、填写项目需求描述以及审核阶段[^1]。 #### 2. **图像标注能力集成** 对于图像识别和标注的需求,Gemini 1.5 Flash可与其他工具如Cloud Vision或Amazon Rekognition协同工作。具体实现方法包括调用其预训练模型接口,提供图片URL或二进制数据流作为输入参数,并接收返回的结果集用于进一步处理[^2]。 以下是简单的Python代码示例展示如何利用这些服务进行基本操作: ```python import requests def get_image_labels(api_key, image_url): url = "https://vision.googleapis.com/v1/images:annotate?key=" + api_key payload = { "requests": [ { "image": {"source": {"imageUri": image_url}}, "features": [{"type": "LABEL_DETECTION", "maxResults": 10}] } ] } response = requests.post(url, json=payload) return response.json() api_key = 'your_api_key_here' image_url = 'http://example.com/path/to/image.jpg' labels = get_image_labels(api_key, image_url) print(labels) ``` #### 3. **多语言支持与语义理解** 得益于Google Gemini的强大性能,在自然语言处理领域展现了卓越的表现力。无论是跨文化交流还是复杂场景下的意图捕捉均能胜任[^3]。 #### 4. **构建推荐系统案例分享** 当考虑将Gemini应用于实际业务逻辑时,比如商品个性化推送,则可能涉及到检索增强生成(Retrieval-Augmented Generation,RAG)架构的设计思路探讨。这里提到的一篇对比分析文章深入剖析了不同框架之间的优劣差异[^4]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值