问了 Gemini 1.5 Pro 五个问题,找到了初遇ChatGPT的感觉

一个月前(2月15日),Sora和 Gemini 1.5 同时推出,这个故事很多人都听过了,Google 被冠以 AI 界汪峰的名头。

人们纷纷震惊于 Sora 的强大,讨论 Sora 是不是世界模型。而 Gemini 1.5 的第一个模型 Gemini 1.5 Pro 在发布后没多久就逐渐无人问津了。

当时 Gemini 1.5 Pro 只开放了 Waitlist,一直没能上手测倒是成了一块心病。

最近 Gemini 1.5 Pro 迎来一波大规模开放测试,当时排队的基本都能使用了,有些没有邮件通知,朋友们都可去看看。

链接 :https://aistudio.google.com/

图片

Gemini 1.5 Pro 最大的特点就是10M 上下文与多模态理解相互搭配,实现超强的检索和学习能力,我们也就围绕这两点,问了他五个问题

问题一:88 万字的《三体》,后续故事怎么发展?

我们向Gemini提供了长达约88万字的科幻小说《三体》,它可以根据小说的题材重新编写一版新的小说大纲,从背景设定、主要人物、情节梗概、主题设定到小说结局它可以非常有逻辑地完成。

另外对于《三体》的开放式结局它也可以继续扩写,在充分地满足大家的各种想象的同时又不脱离原著。

### 关于Gemini 1.5 Flash的技术文档下载、配置与使用教程 目前关于Gemini 1.5 Flash的具体技术文档尚未公开全面的独立章节,但可以通过以下方式获取相关资源并完成配置: #### 1. **API_KEY申请流程** 为了使用Gemini的相关功能,需先通过官方渠道申请API_KEY。此过程通常涉及注册开发者账号、填写项目需求描述以及审核阶段[^1]。 #### 2. **图像标注能力集成** 对于图像识别和标注的需求,Gemini 1.5 Flash可与其他工具如Cloud Vision或Amazon Rekognition协同工作。具体实现方法包括调用其预训练模型接口,提供图片URL或二进制数据流作为输入参数,并接收返回的结果集用于进一步处理[^2]。 以下是简单的Python代码示例展示如何利用这些服务进行基本操作: ```python import requests def get_image_labels(api_key, image_url): url = "https://vision.googleapis.com/v1/images:annotate?key=" + api_key payload = { "requests": [ { "image": {"source": {"imageUri": image_url}}, "features": [{"type": "LABEL_DETECTION", "maxResults": 10}] } ] } response = requests.post(url, json=payload) return response.json() api_key = 'your_api_key_here' image_url = 'http://example.com/path/to/image.jpg' labels = get_image_labels(api_key, image_url) print(labels) ``` #### 3. **多语言支持与语义理解** 得益于Google Gemini的强大性能,在自然语言处理领域展现了卓越的表现力。无论是跨文化交流还是复杂场景下的意图捕捉均能胜任[^3]。 #### 4. **构建推荐系统案例分享** 当考虑将Gemini应用于实际业务逻辑时,比如商品个性化推送,则可能涉及到检索增强生成(Retrieval-Augmented Generation,RAG)架构的设计思路探讨。这里提到的一篇对比分析文章深入剖析了不同框架之间的优劣差异[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值