目录
1. 问题描述
给你一个整数数组 nums
和一个整数 k
,请你返回子数组内所有元素的乘积严格小于 k
的连续子数组的数目。
示例 1:
输入:nums = [10,5,2,6], k = 100 输出:8 解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。 需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。
示例 2:
输入:nums = [1,2,3], k = 0 输出:0
提示:
1 <= nums.length <= 3 * 10^4
1 <= nums[i] <= 1000
0 <= k <= 10^6
2. 思路与算法1
第一感应该是一个动态规划问题。
一个子数组如果满足条件的话,那么它的所有非空子数组也都满足条件。
从左向右遍历,寻找以索引结尾的满足条件的最长连续子数组,然后统计它的幂集个数。但是这样会存在重复计数。以[10,5,2,6]为例,[10,5,2]是一个满足条件的最长连续子数组,接下来,[5,2,6]也是,但是[10,5,2]和[5,2,6]有一部分重叠的子数组。如何排除重复计数呢?
通过观察可以发现,[5,2,6]的所有子数组中,只有包含最右边的6的连续子数组没有被前面统计过。
动态维护到 以索引结尾的 满足条件的最长连续子数组,记为,由到可以以迭代的方式进行更新。确定后,由它所贡献的新增的满足条件的连续子数组数为
中含索引元素的连续子数组的个数,即当前连续子数组长度加1.
以下代码中没有特意跟踪 的信息,针对每个i,直接找一它结尾的最长连续字串的长度。
class Solution:
def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
ans = 0
for i in range(len(nums)):
if nums[i] >= k:
continue
else:
prod = nums[i]
j = i
while j > 0:
tmp = prod * nums[j-1]
if tmp >= k:
break
j -= 1
prod = tmp
print(j,i)
ans += (i-j+1)
return ans
不过这个方案超时了。。。
3. 思路与算法2
改进一下。
因为元素为1时是不影响乘积的,所以当前元素为1时,以它为结尾的最长连续字串的长度在上一个元素的基础上自然增一,不需要额外的计算。呃。。。这个改进方案不是空穴来风^-^,上一个方案就是倒在一个几乎是全1的超长testcase上。。。
class Solution:
def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
ans = 0
prevLen = 0
for i in range(len(nums)):
if nums[i] >= k:
continue
else:
if nums[i] == 1:
prevLen = prevLen + 1
ans += prevLen
else:
prod = nums[i]
j = i
while j > 0:
tmp = prod * nums[j-1]
if tmp >= k:
break
j -= 1
prod = tmp
#print(j,i)
prevLen = (i-j+1)
ans += prevLen
return ans
执行用时:172 ms, 在所有 Python3 提交中击败了38.39%的用户
内存消耗:17.2 MB, 在所有 Python3 提交中击败了12.29%的用户
回到总目录:笨牛慢耕的Leetcode每日一题总目录(动态更新。。。)