Leetcode0713. 乘积小于 K 的子数组(medium)

本文探讨了一种动态规划方法来解决寻找整数数组中乘积小于特定值K的连续子数组数量的问题。算法思路包括从左向右遍历数组,维护最长满足条件的子数组,并计算其子集贡献的满足条件的子数组个数。在遇到1时,由于1不改变乘积,可以直接累加长度。经过优化后的算法在部分测试用例上仍然超时,但内存使用得到了改善。
摘要由CSDN通过智能技术生成

目录

1. 问题描述

2. 思路与算法1

3. 思路与算法2


1. 问题描述

给你一个整数数组 nums 和一个整数 k ,请你返回子数组内所有元素的乘积严格小于 k 的连续子数组的数目。

示例 1:

输入:nums = [10,5,2,6], k = 100
输出:8
解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2],、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。

示例 2:

输入:nums = [1,2,3], k = 0
输出:0

提示:

  • 1 <= nums.length <= 3 * 10^4
  • 1 <= nums[i] <= 1000
  • 0 <= k <= 10^6

2. 思路与算法1

        第一感应该是一个动态规划问题。

        一个子数组如果满足条件的话,那么它的所有非空子数组也都满足条件。

        从左向右遍历,寻找以索引i结尾的满足条件的最长连续子数组,然后统计它的幂集个数。但是这样会存在重复计数。以[10,5,2,6]为例,[10,5,2]是一个满足条件的最长连续子数组,接下来,[5,2,6]也是,但是[10,5,2]和[5,2,6]有一部分重叠的子数组。如何排除重复计数呢?

        通过观察可以发现,[5,2,6]的所有子数组中,只有包含最右边的6的连续子数组没有被前面统计过。

        动态维护到 以索引i结尾的 满足条件的最长连续子数组,记为longestSubArr(i),由longestSubArr(i)longestSubArr(i+1)可以以迭代的方式进行更新。确定longestSubArr(i)后,由它所贡献的新增的满足条件的连续子数组数为longestSubArr(i)

中含索引i元素的连续子数组的个数,即当前连续子数组长度加1.

        以下代码中没有特意跟踪 longestSubArr(i)的信息,针对每个i,直接找一它结尾的最长连续字串的长度。

       

class Solution:
    def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
        ans = 0
        for i in range(len(nums)):
            if nums[i] >= k:
                continue
            else:
                prod = nums[i]
                j = i
                while j > 0:
                    tmp = prod * nums[j-1]
                    if tmp >= k:
                        break
                    j -= 1
                    prod = tmp
                print(j,i)
                ans += (i-j+1)
        return ans

        不过这个方案超时了。。。

3. 思路与算法2

        改进一下。

        因为元素为1时是不影响乘积的,所以当前元素为1时,以它为结尾的最长连续字串的长度在上一个元素的基础上自然增一,不需要额外的计算。呃。。。这个改进方案不是空穴来风^-^,上一个方案就是倒在一个几乎是全1的超长testcase上。。。

class Solution:
    def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
        ans = 0
        prevLen = 0
        for i in range(len(nums)):
            if nums[i] >= k:
                continue
            else:
                if nums[i] == 1:
                    prevLen = prevLen + 1
                    ans += prevLen
                else:
                    prod = nums[i]
                    j = i
                    while j > 0:
                        tmp = prod * nums[j-1]
                        if tmp >= k:
                            break
                        j -= 1
                        prod = tmp
                    #print(j,i)
                    prevLen = (i-j+1)
                    ans += prevLen
        return ans

        

        执行用时:172 ms, 在所有 Python3 提交中击败了38.39%的用户

        内存消耗:17.2 MB, 在所有 Python3 提交中击败了12.29%的用户

        回到总目录:笨牛慢耕的Leetcode每日一题总目录(动态更新。。。) 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值