求连续子序列和的最大值

本文探讨了求解连续子序列最大和问题的四种算法:双层循环、动态规划、分治策略和在线算法。通过具体例子解释了每种算法的工作原理,并分析了它们的适用性和时间复杂度,特别指出在线算法在效率上的优势。
摘要由CSDN通过智能技术生成

问题:连续子序列最大和,其实就是求一个序列中连续的子序列中元素和最大的那个。 最大子序列和是指,给定一组序列,如 [1,-3,2,4,5],求子序列之和的最大值,对于该序列来说,最大子序列之和为 2 + 4 + 5 = 11。

解决方案有很多:1、两个for循环 2 动态规划 3分治算法 4 在线算法

1、 2个for循环的算法,思想是:以每一个数为第一个数,在这些序列中找出最大值 举例的步骤如下:

2、动态规划 思想是:以每个数为该子串的最后一个数,找出这个子串的最大值,然后在这些最大值中找最大值

对上面的数进行举例

d[0]=1

d[1]=max(d[0]-3,-3)=-2

d[2]=max(d[1]+2,2)=2

d[3]=max(d[2]+4,4)=6

d[4]=max(d[3]+5,5)=11

3 分治的做法 思想是:用二分查找的思路,先找出左子列的最大连续值,接着找出右子列的最大连续值,接着找出中间 的跨左右子列的最大值,然后取左子列、右子列、中间列值中的最大值。 举例说明:

以 4 - 3 -2 说明

lm 代表左字列最大值,rm代表右子列最大值,bm代表跨边界最大值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值