线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。
与回归问题不同,分类问题中模型的最终输出是一个离散值。例如:图像分类、垃圾邮件识别、疾病检测等输出均为离散值。其中softmax适用于分类问题。
如上图所示,网络输入分别为x1,x2,因此输入层的个数为2。输入个数也叫特征数或特征向量维度。 网络的输出为o,输出层的个数为1,为线性回归的输出,即,输出层中负责计算o的单元又叫神经元。由于输入层不算入神经网络层数,故该神经网络层数为1。
输出层中的神经元和输入层中的各个输入完全连接。因此,此处的输出层又叫全连接层(fully-connected layer)或稠密层(dense layer)。其中,fully connected的含义:第 N 层的每个神经元和第 N-1 层的所有神经元相连,第 N-1 层 神经元的输出就是第 N 层神经元的输入。