题目链接:树的中心
LT’s blog
题意:找一个点,使得他到其他点的最长距离最小,边权有正有负。
最开始的时候我想这个点一定在树的直径上的中点位置处,WA了好多次后注意到题目数据范围,把这个思路直径否决了。
如果我们将这颗树化为一个有根树,那么一个点到其他点的最远距离就是:MAX(他到子树某个点的最远距离,他经过父亲节点到其他的点的最远距离)。
第一部分可以直接一次dfs得到,对于第二部分来说可以再次dfs维护数组F[u],表示u经过父节点到其他节点的最远距离,由于他可能通过父节点走回自己(父节点到当前节点距离最远),故在第一次dfs时候需要维护一个次大值,并且维护当前点是否在最长路径中。
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+7;
vector<pair<int,int> > G[maxn];
void add(int u,int v,int w){
G[u].push_back({v,w});
G[v].push_back({u,w});
}
int FMax[maxn],SMax[maxn],neber[maxn];
int Up[maxn];
const int inf=0x3f3f3f3f;
void dfs(int u,int fa){
FMax[u]=SMax[u]=-inf;
for(auto p:G[u]){
int v=p.first,w=p.second;
if(v==fa) continue;
dfs(v,u);
int val=FMax[v]+w;
if(val>=FMax[u]){
SMax[u]=FMax[u];
FMax[u]=val;
neber[u]=v;
}
else SMax[u]=max(SMax[u],val);
}
if(FMax[u]==-inf) FMax[u]=SMax[u]=0;
}
void Dfs(int u,int fa){
for(auto p:G[u]){
int v=p.first,w=p.second;
if(v==fa) continue;
if(neber[u]==v) Up[v]=max(Up[u],SMax[u])+w;
else Up[v]=max(Up[u],FMax[u])+w;
Dfs(v,u);
}
}
int main(){
int n,u,v,w;
scanf("%d",&n);
for(int i=1;i<n;++i){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
dfs(1,0);
Dfs(1,0);
int res=inf;
for(int i=1;i<=n;++i) res=min(res,max(Up[i],FMax[i]));
printf("%d\n",res);
return 0;
}