数据处理
1.准备数据集放于
Work/SSD/caffe/data/traindata里面JPEGImages,Annotations
修改参数1:txt.py 里的“tv= ”参数,表示:训练用了多少数据,剩下的就是测试数据。
修改参数2:labelmap_voc.prototxt里的标签 item 下的内容。(0代表背景,1、2、3代表类别)
终端执行:python txt.py (根据参数,自动分出训练集和测试集)
生成结果:在ImageSets里 (生成数据名称)
2.终端执行:./create_list.sh(根据ImageSets重新生成一个完整的数据路径)
3. 终端执行:./create_data.sh (转换数据格式到lmdb文件)
参数修改
1.在/caffe-new-ssd/examples/ssd文件夹里修改训练和测试的.prototxt的类别和相应的预测框个数
训练模型
1.终端执行:./train_ssd_mobilenet.sh (可以更换预训练模型) 开始训练
具体caffe-ssd工程见我的上传https://download.csdn.net/my