L2-001. 紧急救援

本文介绍了一个基于Dijkstra算法和深度优先搜索(DFS)的城市间紧急救援路线规划问题。需要找到从出发城市到目的地的最短路径,并在此过程中尽可能多地集结救援队伍。通过使用Dijkstra算法确定最短路径,并结合DFS来寻找所有可能的最短路径,从而找出能够集结最多救援力量的最佳路线。
摘要由CSDN通过智能技术生成

L2-001. 紧急救援
作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。

输入格式:

输入第一行给出4个正整数N、M、S、D,其中N(2<=N<=500)是城市的个数,顺便假设城市的编号为0~(N-1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。

输出格式:

第一行输出不同的最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出首尾不能有多余空格。

输入样例:
4 5 0 3
20 30 40 10
0 1 1
1 3 2
0 3 3
0 2 2
2 3 2
输出样例:
2 60
0 1 3

解题思路:
可以用Dijkstra,也可以用Dijkstra+DFS做。按照晴神书上的套路来就行了。
Dijkstra +DFS

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=520;
const int inf=1e8;
int n,m,st,ed;
int num[maxn]={0},d[maxn]; //num[i]记录从起点到i的最短路径的条数,d[i]记录从起点到i的最短距离 
int g[maxn][maxn];  //g存入初始图 
int weight[maxn];       //weight[i]表示点权 
vector<int>pre[maxn],path,temppath; //因为最短路径有多条,用pre[v]表示v的前驱 
bool vis[maxn]={false};
void Dijkstra(int st){
    fill(d,d+maxn,inf);
    fill(num,num+maxn,0);
    num[st]=1; //到自己的路径至少有一条 
    d[st]=0;        //到自己的最短距离为0 
    for(int i=0;i<n;i++){
        int u=-1,minn=inf;
        for(int j=0;j<n;j++){
            if(d[j]<minn&&vis[j]==false){
                u=j;
                minn=d[j];
            }
        }
        if(u==-1) return ;
        vis[u]=true;
        for(int v=0;v<n;v++){
            if(g[u][v]!=inf&&vis[v]==false){
                if(d[v]>d[u]+g[u][v]){
                    d[v]=d[u]+g[u][v];
                    pre[v].clear() ;
                    pre[v].push_back(u) ;
                    num[v]=num[u];
                }else if(d[v]==d[u]+g[u][v]){
                    pre[v].push_back(u) ;
                    num[v]+=num[u];
                }
            }
        }
    }
}
int optvalue;  //记录最优点权 
void dfs(int v){
    if(v==st){  
        temppath.push_back(v) ;
        int value=0;        // 计算当前点权 
        for(int i=temppath.size()-1;i>=0;i--){
            value+=weight[temppath[i]];
        }
        if(value>optvalue){
            optvalue=value;
            path=temppath;
        }
        temppath.pop_back() ;
        return ;
    }
    temppath.push_back(v) ;
    for(int i=0;i<pre[v].size() ;i++){
        dfs(pre[v][i]);
    }
    temppath.pop_back() ;
}
int main(){
    fill(g[0],g[0]+maxn*maxn,inf);
    scanf("%d%d%d%d",&n,&m,&st,&ed);
    for(int i=0;i<n;i++)
        scanf("%d",&weight[i]);
    int c1,c2,x;
    for(int i=0;i<m;i++){
        scanf("%d%d%d",&c1,&c2,&x);
        g[c1][c2]=g[c2][c1]=x;
    }
    Dijkstra(st);
    dfs(ed);
    printf("%d %d\n",num[ed],optvalue);
    for(int i=path.size() -1;i>=0;i--){
        printf("%d",path[i]);
        if(i>0) printf(" ");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值