2.1-1应该不用写了
2.1-2重写过程INERTION-SORT,使之按升序排序
伪代码实现:
INERTION-SORT(A)
for j=2 to A.length
key=A[j]
//Insert A[j] to the sorted sequence A[1..j-1]
i=j-1
while i>0 and A[i]<key
A[i+1]=A[i]
i=i-1
A[i+1]=key
附赠C语言实现:
#include <stdio.h>
void insertSort(int a[], int n) {
for (int i = 1; i < n; i++) {
int key = a[i];
int j = i - 1;
while (j>=0 && a[j] < key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
main(){
int a[6] = { 5,2,4,6,1,3 };
insertSort(a, 6);
for(int i = 0; i < 6; i++)
printf("%d ",a[i]);
}
2.1-3考虑以下查找问题:
输入:n个数的一个序列A=<a1,a2,…,an>和一个值v。
输出:下标i使得v=A[i]或者当v不在A中出现时,v为特殊值NIL。
写出线性查找的伪代码,它扫描整个序列来查找v,使用一个循环不变式来证明你的算法是正确的。确保你的循环不变式满足三条必要的性质。
伪代码:
LINEAR-SEARCH(A,v)
for i=1 to A.length
if A[i]==v
return i
return NIL
循环不变式:在for循环的每次迭代开始时,子数组A[1…i-1]不包含等于v的元素。
- 初始化:循环第一次迭代前(i=1时),循环不变式成立。
- 保持:在每次循环迭代中,比较A[i]与v的值,若它们相等则返回i,这是正确的结果。否则进行下一次循环迭代,每次循环结束时可知数组A[1…i]中不包含等于v的元素,因此循环不变式成立。
- 终止:i>A.length=n时循环终止,每次循环i增加1,那么必有i=n+1。在循环不变式的表述中将i用n+1代替,有A[1…n]包含的元素都不等于v。因此算法是正确的。
2.1-4考虑把两个n位二进制整数加起来的问题,这两个整数分别存储在两个n元数组A和B中。这两个整数的和按二进制形式存储在一个(n+1)元数组C中。请给出该问题的形式化描述,并写出伪代码。
- 输入:长度为n的数组A和数组B:元素只有0或1(下标大的表示二进制低位)。
- 输出:长度为n+1的数组C:将数组A和B按二进制位逐位相加。
伪代码:
BINARY-SUM(A,B)
C=new integer[A.length+1]
carry=0
for i=A.length-1 to 0
C[i+1]=(A[i]+B[i]+carry)%2
carry=(A[i]+B[i]+carry)/2
C[0]=carry
return C
附赠C语言实现:
//使用数组对两个n位二进制整数进行二进制加法
#include <stdio.h>
#include <stdlib.h>
int* binarySum(int* a, int* b, int n) {
int* c = (int*)calloc(n + 1, sizeof(int));
int carry = 0;
for (int i = n-1; i >= 0; i--) {
c[i+1] = (a[i] + b[i] + carry) % 2;//本位
carry = (a[i] + b[i] + carry) / 2;//进位
}
c[0] = carry;
return c;
}
main(){
//测试
int a[] = { 0,1,1,0,1,0 };
int b[] = { 1,0,0,1,1,1 };
int* c = binarySum(a, b, 6);
for (int i = 0; i < 7; i++)
printf("%d", c[i]);
//输出1000001
free(c);
}
下一节:《算法导论》2.2练习答案