最少拦截系统
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20657 Accepted Submission(s): 8189
Problem Description
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统.
怎么办呢?多搞几套系统呗!你说说倒蛮容易,成本呢?成本是个大问题啊.所以俺就到这里来求救了,请帮助计算一下最少需要多少套拦截系统.
Input
输入若干组数据.每组数据包括:导弹总个数(正整数),导弹依此飞来的高度(雷达给出的高度数据是不大于30000的正整数,用空格分隔)
Output
对应每组数据输出拦截所有导弹最少要配备多少套这种导弹拦截系统.
Sample Input
8 389 207 155 300 299 170 158 65
Sample Output
2
附上三种解法看哪个适合自己——>
dp解法:和nyoj拦截导弹差不多,就是设置的dp[]表示意义不一样。这里的dp[i]=t表示的第i个元素在第t个单调子序列,比如有7个导弹:5(0), 4(1), 8(2), 3(3), 7(4), 2(5), 1(6).dp[2]=2表示8在第二个子序列中。其他的思路和nyoj拦截导弹一样的,最后求出有几个序列就行了。
#include<stdio.h>
int main()
{
int height[1010];
int dp[1010];
int n,i,j;
int min;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
{
scanf("%d",&height[i]);
dp[i]=1;
}
for(i=1;i<n;i++)
{
for(j=0;j<i;j++)
{
if(height[j]<height[i]&&dp[i]<dp[j]+1)
dp[i]=dp[j]+1;
}
}
min=0;
for(i=0;i<n;i++)
{
if(dp[i]>min)
min=dp[i];
}
printf("%d\n",min);
}
return 0;
}
一般解法:因为此题中数据不大,所以无关紧要,若数据很大,dp会超时的。这个代码简单易懂,实在不懂的自己举几个例子代数进去思路就通了...思路就是先用数组dp储存子序列的第一个数,如果当前高度小于或等于dp数组中子序列的第一位数,则更新dp并进行下一个高度判断;如果遍历所有子序列,该高度都无法插入其中一个序列,就重开序列。最后输出总序列数即可。
<pre class="cpp" name="code">#include<stdio.h>
#include<string.h>
int dp[3010];
int main()
{
int n,i,j;
int exist;
int xulie;
int h[3010];
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
{
scanf("%d",&h[i]);
}
memset(dp,0,sizeof(dp));
xulie=1;dp[0]=h[0];
for(i=0;i<n;i++)
{
exist=1;
for(j=0;j<xulie;j++)//用dp记录单调子序列的第一个数
{
if(dp[j]>=h[i])
//只要小于或等于前面其中一个子序列的第一个数,就更新该子序列的第一位数并进行下一个高度判断。
{
exist=0;
dp[j]=h[i];
break;
}
}
if(exist)//遍历所有子序列,都找不到可以插入的序列,重开一个序列
dp[xulie++]=h[i];
}
printf("%d\n",xulie);
}
return 0;
}
插入排序解法:(这个代码看的别人的。。。)
#include<stdio.h>
main()
{
int i,j,m,x,a[1100],k,cou;
while(~scanf("%d",&m))
{
a[1]=0;
for(i=1;i<=m;)
{//i同时代表系统数量
scanf("%d",&x);
j=i;
while(j>0&&x>a[j]) j--;// 找到x的位置
//如果j>0说明已有的系统可以拦截当前导弹
if(j)
{
a[j]=x;
m--;//导弹被覆盖,系统最大值减小,i当前值不变
continue;
}
// 如果循环到j==0说明已有的系统不能拦截当前导弹 ,
//则新增系统且此时新系统可拦截的导弹高度最高 ,将新系统插入到第一个位置
for(k=i+1;k>1;k--)
{
a[k]=a[k-1];
}
a[1]=x;i++;//新增系统
}
printf("%d\n",i-1);
}
}