心急的C小加
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
C小加有一些木棒,它们的长度和质量都已经知道,需要一个机器处理这些木棒,机器开启的时候需要耗费一个单位的时间,如果第i+1个木棒的重量和长度都大于等于第i个处理的木棒,那么将不会耗费时间,否则需要消耗一个单位的时间。因为急着去约会,C小加想在最短的时间内把木棒处理完,你能告诉他应该怎样做吗?
-
输入
-
第一行是一个整数T(1<T<1500),表示输入数据一共有T组。
每组测试数据的第一行是一个整数N(1<=N<=5000),表示有N个木棒。接下来的一行分别输入N个木棒的L,W(0 < L ,W <= 10000),用一个空格隔开,分别表示木棒的长度和质量。
输出
- 处理这些木棒的最短时间。 样例输入
-
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
样例输出
-
2 1 3
-
哎。。。这题看一遍发现很简单,就是HDU最少拦截系统的翻版。结果用动规超时,郁闷死了。思路:可以按长度升序排序,若长度相等,按质量升序排列。这样问题就转化成HDU最少拦截系统了——>因为长度的数据是可以忽略的(我们是按升序排列的,不是吗?),所以问题就变成了求一系列物体质量的单调子序列最少个数。 超时代码附上(ac在后面):
-
#include<stdio.h> #include<algorithm> using namespace std; struct record { int l; int w; }num[1600]; bool cmp(record a,record b) { if(a.l!=b.l) return (a.l<b.l); else return (a.w<b.w); } bool cmp1(int x,int y) { return x>y; } int main() { int n,m,i,j; int dp[1600]; int min; scanf("%d",&n); while(n--) { scanf("%d",&m); for(i=0;i<m;i++) { scanf("%d%d",&num[i].l,&num[i].w); dp[i]=1; } sort(num,num+m,cmp); for(i=1;i<m;i++) { for(j=0;j<i;j++) { if(num[j].w>num[i].w&&dp[i]<dp[j]+1) dp[i]=dp[j]+1; } } sort(dp,dp+m,cmp1); printf("%d\n",dp[0]); } return 0; }
-
ac代码:
-
#include<stdio.h> #include<algorithm> using namespace std; struct record { int l; int w; }num[1600]; bool cmp(record a,record b) { if(a.l!=b.l) return (a.l<b.l); else return (a.w<b.w); } bool cmp1(int x,int y) { return x>y; } int main() { int n,m,i,j; int dp[1600]; int k; int t; scanf("%d",&n); while(n--) { scanf("%d",&m); for(i=0;i<m;i++) { scanf("%d%d",&num[i].l,&num[i].w); dp[i]=1; } sort(num,num+m,cmp); dp[0]=num[0].w; k=1; for(i=1;i<m;i++) { t=1; for(j=0;j<k;j++) { if(dp[j]<=num[i].w) { dp[j]=num[i].w; t=0; break; } } if(t) dp[k++]=num[i].w; } printf("%d\n",k); } return 0; }
-
第一行是一个整数T(1<T<1500),表示输入数据一共有T组。