nyoj 236 心急的c小加 【LIS】

心急的C小加

时间限制: 1000 ms  |            内存限制: 65535 KB
难度: 4
描述

C小加有一些木棒,它们的长度和质量都已经知道,需要一个机器处理这些木棒,机器开启的时候需要耗费一个单位的时间,如果第i+1个木棒的重量和长度都大于等于第i个处理的木棒,那么将不会耗费时间,否则需要消耗一个单位的时间。因为急着去约会,C小加想在最短的时间内把木棒处理完,你能告诉他应该怎样做吗?

输入
第一行是一个整数T(1<T<1500),表示输入数据一共有T组。
每组测试数据的第一行是一个整数N(1<=N<=5000),表示有N个木棒。接下来的一行分别输入N个木棒的L,W(0 < L ,W <= 10000),用一个空格隔开,分别表示木棒的长度和质量。
输出
处理这些木棒的最短时间。
样例输入
3 
5 
4 9 5 2 2 1 3 5 1 4 
3 
2 2 1 1 2 2 
3 
1 3 2 2 3 1 
样例输出
2
1
3
哎。。。这题看一遍发现很简单,就是HDU最少拦截系统的翻版。结果用动规超时,郁闷死了。思路:可以按长度升序排序,若长度相等,按质量升序排列。这样问题就转化成HDU最少拦截系统了——>因为长度的数据是可以忽略的(我们是按升序排列的,不是吗?),所以问题就变成了求一系列物体质量的单调子序列最少个数。        超时代码附上(ac在后面):
 
#include<stdio.h>
#include<algorithm>
using namespace std;
struct record
{
    int l;
    int w;
}num[1600];
bool cmp(record a,record b)
{
    if(a.l!=b.l)
    return (a.l<b.l);
    else
    return (a.w<b.w);
}
bool cmp1(int x,int y)
{
    return x>y;
}
int main()
{
    int n,m,i,j;
    int dp[1600];
    int min;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&num[i].l,&num[i].w);
            dp[i]=1;
        }
        sort(num,num+m,cmp);
        for(i=1;i<m;i++)
        {
            for(j=0;j<i;j++)
            {
                if(num[j].w>num[i].w&&dp[i]<dp[j]+1)
                dp[i]=dp[j]+1;
            }
        }
        sort(dp,dp+m,cmp1);
        printf("%d\n",dp[0]);
    }
    return 0;
}
        

ac代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
struct record
{
    int l;
    int w;
}num[1600];
bool cmp(record a,record b)
{
    if(a.l!=b.l)
    return (a.l<b.l);
    else
    return (a.w<b.w);
}
bool cmp1(int x,int y)
{
    return x>y;
}
int main()
{
    int n,m,i,j;
    int dp[1600];
    int k;
    int t;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d%d",&num[i].l,&num[i].w);
            dp[i]=1;
        }
        sort(num,num+m,cmp);
        dp[0]=num[0].w;
        k=1;
        for(i=1;i<m;i++)
        {
            t=1;
            for(j=0;j<k;j++)
            {
                if(dp[j]<=num[i].w)
                {
                    dp[j]=num[i].w;
                    t=0;
                    break;
                }
            }
            if(t)
            dp[k++]=num[i].w;
        }
        printf("%d\n",k);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值