Time Limit: 3 second(s) | Memory Limit: 64 MB |
Given an array with N elements, indexed from 1 to N. Now you will be given some queries in the form I J, your task is to find the minimum value from index I toJ.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
The first line of a case is a blank line. The next line contains two integers N (1 ≤ N ≤ 105), q (1 ≤ q ≤ 50000). The next line contains N space separated integers forming the array. There integers range in [0, 105].
The next q lines will contain a query which is in the form I J (1 ≤ I ≤ J ≤ N).
Output
For each test case, print the case number in a single line. Then for each query you have to print a line containing the minimum value between index I and J.
Sample Input | Output for Sample Input |
2
5 3 78 1 22 12 3 1 2 3 5 4 4
1 1 10 1 1 | Case 1: 1 3 12 Case 2: 10 |
Note
Dataset is huge. Use faster I/O methods.
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <string>
#include <algorithm>
#define MAXN 100000+10
#define MAXM 2000+10
#define INF 0x3f3f3f3f
using namespace std;
int Amin[MAXN][30];
int A[MAXN];
int N, Q;
void RMQ_init()
{
for(int i = 1; i <= N; i++)
Amin[i][0] = A[i];
for(int j = 1; (1<<j) <= N; j++)
{
for(int i = 1; i + (1<<j)-1 <= N; i++)
Amin[i][j] = min(Amin[i][j-1], Amin[i+(1<<(j-1))][j-1]);
}
}
int query(int L, int R)
{
int k = 0;
while((1<<(k+1)) <= R-L+1) k++;
return min(Amin[L][k], Amin[R-(1<<k)+1][k]);
}
int k = 1;
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &N, &Q);
for(int i = 1; i <= N; i++)
scanf("%d", &A[i]);
RMQ_init();
int a, b;
printf("Case %d:\n", k++);
while(Q--)
{
scanf("%d%d", &a, &b);
printf("%d\n", query(a, b));
}
}
return 0;
}