# Codeforces 596C Wilbur and Points 【贪心 + sort】

C. Wilbur and Points
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Wilbur is playing with a set of n points on the coordinate plane. All points have non-negative integer coordinates. Moreover, if some point (xy) belongs to the set, then all points (x'y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y also belong to this set.

Now Wilbur wants to number the points in the set he has, that is assign them distinct integer numbers from 1 to n. In order to make the numbering aesthetically pleasing, Wilbur imposes the condition that if some point (xy) gets number i, then all (x',y') from the set, such that x' ≥ x and y' ≥ y must be assigned a number not less than i. For example, for a set of four points (00), (01), (10) and (11), there are two aesthetically pleasing numberings. One is 1234 and another one is 1324.

Wilbur's friend comes along and challenges Wilbur. For any point he defines it's special value as s(x, y) = y - x. Now he gives Wilbur some w1w2,..., wn, and asks him to find an aesthetically pleasing numbering of the points in the set, such that the point that gets number i has it's special value equal to wi, that is s(xi, yi) = yi - xi = wi.

Now Wilbur asks you to help him with this challenge.

Input

The first line of the input consists of a single integer n (1 ≤ n ≤ 100 000) — the number of points in the set Wilbur is playing with.

Next follow n lines with points descriptions. Each line contains two integers x and y (0 ≤ x, y ≤ 100 000), that give one point in Wilbur's set. It's guaranteed that all points are distinct. Also, it is guaranteed that if some point (xy) is present in the input, then all points (x'y'), such that 0 ≤ x' ≤ x and 0 ≤ y' ≤ y, are also present in the input.

The last line of the input contains n integers. The i-th of them is wi ( - 100 000 ≤ wi ≤ 100 000) — the required special value of the point that gets number i in any aesthetically pleasing numbering.

Output

If there exists an aesthetically pleasant numbering of points in the set, such that s(xi, yi) = yi - xi = wi, then print "YES" on the first line of the output. Otherwise, print "NO".

If a solution exists, proceed output with n lines. On the i-th of these lines print the point of the set that gets number i. If there are multiple solutions, print any of them.

Sample test(s)
input
5
2 0
0 0
1 0
1 1
0 1
0 -1 -2 1 0

output
YES
0 0
1 0
2 0
0 1
1 1

input
3
1 0
0 0
2 0
0 1 2

output
NO

Note

In the first sample, point (20) gets number 3, point (00) gets number one, point (10) gets number 2, point (11) gets number 5 and point (01) gets number 4. One can easily check that this numbering is aesthetically pleasing and yi - xi = wi.

In the second sample, the special values of the points in the set are 0 - 1, and  - 2 while the sequence that the friend gives to Wilbur is012. Therefore, the answer does not exist.

AC代码：

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-4
#define MAXN (200000+10)
#define MAXM (1000000)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 100000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
using namespace std;
struct Node{
int x, y, val, id, rec;
};
Node num1[MAXN], num2[MAXN];
bool cmp(Node a, Node b)
{
if(a.val != b.val)
return a.val < b.val;
else if(a.x != b.x)
return a.x < b.x;
else
return a.y < b.y;
}
bool cmp1(Node a, Node b)
{
if(a.val != b.val)
return a.val < b.val;
else
return a.id < b.id;
}
bool cmp2(Node a, Node b){
return a.id < b.id;
}
int main()
{
int n; Ri(n);
for(int i = 0; i < n; i++)
{
Ri(num1[i].x); Ri(num1[i].y);
num1[i].val = num1[i].y - num1[i].x;
num1[i].id = i;
}
sort(num1, num1+n, cmp);
for(int i = 0; i < n; i++)
{
Ri(num2[i].val);
num2[i].id = i;
}
sort(num2, num2+n, cmp1);
bool flag = true;
for(int i = 0; i < n; i++)
{
if(num1[i].val != num2[i].val)
{
flag = false;
break;
}
else
num2[i].rec = num1[i].id;
}
if(flag)
{
sort(num2, num2+n, cmp2);
sort(num1, num1+n, cmp2);
for(int i = 1; i < n; i++)
{
if(!(num1[num2[i].rec].x > num1[num2[i-1].rec].x || num1[num2[i].rec].y > num1[num2[i-1].rec].y))
{
flag = false;
break;
}
}
if(flag)
{
printf("YES\n");
for(int i = 0; i < n; i++)
printf("%d %d\n", num1[num2[i].rec].x, num1[num2[i].rec].y);
}
else
printf("NO\n");
}
else
printf("NO\n");
return 0;
}


#### Codeforces596C Wilbur and Points(贪心)

2015-11-16 17:25:51

#### 【Codeforces】-702C-Cellular Network（二分）

2016-08-06 11:51:33

#### POJ 3190 Stall Reservations-奶牛分栏（区间贪心，优先队列）

2014-11-11 20:03:24

#### 扫描线 求n个矩形覆盖后的总面积之和 hdu1542 Atlantis

2015-10-11 22:42:29

#### CodeForces 1000C Covered Points Count

2018-07-02 14:59:10

#### Codeforces 596 C Wilbur and Points【贪心】

2016-09-03 15:43:18

#### CF--1000C. Covered Points Count

2018-06-30 17:04:20

#### 回溯法求数字1，2，……n 的所有子集

2016-03-11 16:28:11

#### 记忆化搜索（搜索+dp思想）

2015-03-08 20:38:16

#### 有向图判环+拆解图求参会期望 SRM 660 Div1 Medium: Privateparty

2015-08-05 19:31:00