windy数
Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)
windy定义了一种windy数。
不含前导零且相邻两个数字之差至少为 2 的正整数被称为windy数。
windy想知道,在 A 和 B 之间,包括 A 和 B ,总共有多少个windy数?
Input
包含两个整数, A B 。
满足 1≤A≤B≤2000000000 .
Output
Sample input and output
Sample Input | Sample Output |
---|---|
1 10 | 9 |
Source
Windy
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 1000000
#define eps 1e-8
#define MAXN (200000+10)
#define MAXM (100000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while((a)--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
#pragma comment(linker, "/STACK:102400000,102400000")
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
int dp[20][10];
//dp[i][j]表示长度为i 且 最高位为j的windy个数
void Init()
{
CLR(dp, 0);
for(int i = 1; i <= 20; i++)
{
if(i == 1)
{
for(int j = 0; j <= 9; j++)
dp[i][j] = 1;
continue;
}
for(int j = 0; j <= 9; j++)
{
for(int k = 0; k <= 9; k++)
{
if(abs(k-j) >= 2)
dp[i][j] += dp[i-1][k];
}
}
}
}
int bit[20];
int Count(int n)
{
if(n == 0) return 0;
int len = 0, ans = 0;
while(n)
{
bit[++len] = n % 10;
n /= 10;
}
bool flag = true;
for(int i = 1; i <= len-1; i++)
for(int j = 1; j <= 9; j++)
ans += dp[i][j];
for(int j = 1; j < bit[len]; j++) ans += dp[len][j];
for(int i = len-1; i >= 1; i--)
{
for(int j = 0; j < bit[i]; j++) if(abs(j-bit[i+1]) >= 2)
ans += dp[i][j];//填第i位
if(abs(bit[i]-bit[i+1]) < 2) {flag = false; break;}//不合法
}
if(flag) ans++;//自己
return ans;
}
int main()
{
Init();
int n, m;
while(scanf("%d%d", &n, &m) != EOF) Pi(Count(m) - Count(n-1));
return 0;
}