Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).
Output
For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.
Sample Input | Output for Sample Input |
5 123456 1 123456 2 2 31 2 32 29 8751919 | Case 1: 123 456 Case 2: 152 936 Case 3: 214 648 Case 4: 429 296 Case 5: 665 669 |
题意:问你n^k的前三位和后三位。
思路:前三位取log10求出不足10的小数部分 * 100,后三位直接快速幂。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#define CLR(a, b) memset(a, (b), sizeof(a))
#define ll o<<1
#define rr o<<1|1
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
const int MAXN = 5*1e4+10;
const int INF = 0x3f3f3f3f;
void add(LL &x, LL y) {x += y; x %= MOD;}
LL pow_mod(LL a, int n)
{
LL ans = 1;
while(n)
{
if(n & 1)
ans = ans * a % 1000;
a = a * a % 1000;
n >>= 1;
}
return ans;
}
int main()
{
int t, kcase = 1; scanf("%d", &t);
while(t--)
{
int n, k;
scanf("%d%d", &n, &k);
double ans = 1.0 * k * log10(n*1.0);
ans = ans - (LL)ans;
printf("Case %d: %lld %03lld\n", kcase++, (LL)(pow(10, ans) * 100), pow_mod(n, k));
}
return 0;
}