描述
输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,找到一个具有最大和的连续子数组。
1.子数组是连续的,比如[1,3,5,7,9]的子数组有[1,3],[3,5,7]等等,但是[1,3,7]不是子数组
2.如果存在多个最大和的连续子数组,那么返回其中长度最长的,该题数据保证这个最长的只存在一个
3.该题定义的子数组的最小长度为1,不存在为空的子数组,即不存在[]是某个数组的子数组
4.返回的数组不计入空间复杂度计算
数据范围:
1<=n<=10^51<=n<=105
-100 <= a[i] <= 100−100<=a[i]<=100
要求:时间复杂度O(n)O(n),空间复杂度O(n)O(n)
进阶:时间复杂度O(n)O(n),空间复杂度O(1)O(1)
示例1
输入:
[1,-2,3,10,-4,7,2,-5]
复制返回值:
[3,10,-4,7,2]
复制说明:
经分析可知,输入数组的子数组[3,10,-4,7,2]可以求得最大和为18,故返回[3,10,-4,7,2]
示例2
输入:
[1]
复制返回值:
[1]
复制
示例3
输入:
[1,2,-3,4,-1,1,-3,2]
复制返回值:
[1,2,-3,4,-1,1]
复制说明:
经分析可知,最大子数组的和为4,有[4],[4,-1,1],[1,2,-3,4],[1,2,-3,4,-1,1],故返回其中长度最长的[1,2,-3,4,-1,1]
示例4
输入:
[-2,-1]
复制返回值:
[-1]
复制说明:
子数组最小长度为1,故返回[-1]
import java.util.*;
import static java.lang.Math.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param array int整型一维数组
* @return int整型一维数组
*/
public int[] FindGreatestSumOfSubArray (int[] array) {
// write code here
int len=array.length;
int[] dp=new int[len];
int[] l=new int[len];
int[] r=new int[len];
// System.out.println("xx");
dp[0]=array[0];
l[0]=0;
r[0]=0;
int max=array[0];
int max_index_l=0;
int max_index_r=0;
for(int i=1;i<len;i++){
int temp1=dp[i-1]+array[i];
int temp2=array[i];
if(temp1>=temp2){
l[i]=i;
r[i]=r[i-1];
dp[i]=temp1;
}else{
l[i]=i;
r[i]=i;
dp[i]=temp2;
}
if(dp[i]>=max){
max=dp[i];
max_index_l=l[i];
max_index_r=r[i];
}
}
// System.out.println("xx");
int[] ans=new int[max_index_l-max_index_r+1];
for(int i=0;i<max_index_l-max_index_r+1;i++){
ans[i]=array[i+max_index_r];
}
return ans;
}
}
思路:
1. 思路承接上一题,先把最大数组找出来,在这个基础上,我们再把数组具体是什么找出来
2. 具体数组很好找,直接保存左右两边就行
3. 最后考虑到输出最长数组,把判断的时候等号加上。