JZ85 连续子数组的最大和(二)

此篇博客探讨了一种算法问题,要求在给定的整数数组中找到具有最大和的连续子数组,并确保其长度至少为1。在时间复杂度为O(n)和空间复杂度为O(1)的限制下,解决方案是使用Kadane's algorithm找到最长且具有最大和的子数组。示例展示了不同输入数组的情况及其对应的最长子数组。
摘要由CSDN通过智能技术生成

描述

输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,找到一个具有最大和的连续子数组。

1.子数组是连续的,比如[1,3,5,7,9]的子数组有[1,3],[3,5,7]等等,但是[1,3,7]不是子数组

2.如果存在多个最大和的连续子数组,那么返回其中长度最长的,该题数据保证这个最长的只存在一个

3.该题定义的子数组的最小长度为1,不存在为空的子数组,即不存在[]是某个数组的子数组

4.返回的数组不计入空间复杂度计算

数据范围:

1<=n<=10^51<=n<=105

-100 <= a[i] <= 100−100<=a[i]<=100

要求:时间复杂度O(n)O(n),空间复杂度O(n)O(n)

进阶:时间复杂度O(n)O(n),空间复杂度O(1)O(1)

示例1

输入:

[1,-2,3,10,-4,7,2,-5]

复制返回值:

[3,10,-4,7,2]

复制说明:

经分析可知,输入数组的子数组[3,10,-4,7,2]可以求得最大和为18,故返回[3,10,-4,7,2]   

示例2

输入:

[1]

复制返回值:

[1]

复制

示例3

输入:

[1,2,-3,4,-1,1,-3,2]

复制返回值:

[1,2,-3,4,-1,1]

复制说明:

经分析可知,最大子数组的和为4,有[4],[4,-1,1],[1,2,-3,4],[1,2,-3,4,-1,1],故返回其中长度最长的[1,2,-3,4,-1,1]   

示例4

输入:

[-2,-1]

复制返回值:

[-1]

复制说明:

子数组最小长度为1,故返回[-1]   

import java.util.*;

import static java.lang.Math.*;
public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param array int整型一维数组 
     * @return int整型一维数组
     */
    public int[] FindGreatestSumOfSubArray (int[] array) {
        // write code here
        int len=array.length;
        int[] dp=new int[len];
        int[] l=new int[len];
        int[] r=new int[len];
        // System.out.println("xx");
        dp[0]=array[0];
       l[0]=0;
       r[0]=0;
       int max=array[0];
       int max_index_l=0;
       int max_index_r=0;
       for(int i=1;i<len;i++){
           int temp1=dp[i-1]+array[i];
           int temp2=array[i];
           if(temp1>=temp2){
               l[i]=i;
               r[i]=r[i-1];
               dp[i]=temp1;
           }else{
               l[i]=i;
               r[i]=i;
               dp[i]=temp2;
           }
           if(dp[i]>=max){
               max=dp[i];
                        max_index_l=l[i];
            max_index_r=r[i];


           }


       }
    //    System.out.println("xx");
       int[] ans=new int[max_index_l-max_index_r+1];
       for(int i=0;i<max_index_l-max_index_r+1;i++){
           ans[i]=array[i+max_index_r];
       }
       
       return ans;


    }
}

思路:

1. 思路承接上一题,先把最大数组找出来,在这个基础上,我们再把数组具体是什么找出来

2. 具体数组很好找,直接保存左右两边就行

3. 最后考虑到输出最长数组,把判断的时候等号加上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值