POJ - 1001 Exponentiation(浮点数高精度乘法)

今天信息学院的一个老师跟我讨论这个题,很遗憾我不会用Java的bigInteger类,只能手动用数组来模拟这个题了。

点我看题

题意:求r^n,其中0<r<99.99,0<n<=25.可以肯定的是,long double都存不下99.99^25,所以高精度了,这个题带有小数,那么我们首先要想起小学乘法里面的小数相乘问题,两个小数相乘,最后得到的结果中小数点位数等于乘数与被乘数的小数点位数之和。那这个题我们可以先记录下底数的小数点位数,然后将小数化为整数,最后就变成了整数相乘的高精度问题了,假设我们用数组a来保存乘数,数组b来保存被乘数(ab的高位保存的数的高位,所有下标从1开始),数组ans来存答案,那么我们根据所列的竖式可得:ans[i+j-1]+=a[i]*b[j]+add(add为进位),add=ans[i+j-1]/10,a[i+j-1]%=10;然后搞一搞答案就出来了。

参考代码:

#include<cstdio>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<list>
#include<vector>
#include<iostream>

using namespace std;
char s[10];//底数
int r[10];//用整型数组来保存底数,且去掉小数点
int n;//指数
int tmp[1000];//临时变量,存储中间计算过程
int ans[1000];//用于保存最终结果
int point;//表示小数点位数

/*两个浮点数相乘,最终得到的浮点数的小数点位数是可以确定的,也就是乘数与被乘数小数点位数之和*/
int main()
{
    while( ~scanf("%s%d",s,&n))
    {
        //将输入的底数用整型数组来保存,且去掉小数点然后倒序,如12.34就存为4321,同时求出小数点位数
        int lens = strlen(s);
        int lenr = 1;
        bool flag = false;
        point = 0;
        for( int i = lens-1; i >= 0; i--)
        {
            if( s[i] != '.')
                r[lenr++] = s[i]-'0';
            else
                flag = true;
            //用于求小数点位数
            if( flag)
            {
                point = lens-i-1;
                flag = false;
            }
        }
        lenr--;

        //高精度乘法
        int lena = 1;
        memset(tmp,0,sizeof(tmp));
        memset(ans,0,sizeof(ans));
        tmp[1] = 1;
        for( int cnt = 0; cnt < n; cnt++)
        {
            for( int i = 1; i <= lena; i++)
            {
                int add = 0;
                for( int j = 1; j <= lenr; j++)
                {
                    ans[i+j-1] += tmp[i]*r[j]+add;
                    add = ans[i+j-1]/10;
                    ans[i+j-1] %= 10;
                }
                ans[i+lenr] = add;
            }

            lena += lenr;//计算答案的长度
            while( ans[lena] == 0 && lena > 1)//删除前导0
                lena--;
            if( cnt != n-1)
                for( int i = 1; i <= lena; i++)
                    tmp[i] = ans[i], ans[i] = 0;
        }


        //对结果的输出格式进行处理
        point *= n;//r^n共有point位小数
        if( lena <= point)//结果为纯小数
        {
            printf(".");
            for( int i = 1; i <= point-lena; i++)
                printf("0");
            int p = 0;
            while( ans[p] == 0 && p <= lena)//删除多余的0
                p++;
            for( int i = lena; i >= p; i--)
                printf("%d",ans[i]);
            puts("");
        }
        else//结果不为小数
        {
            int i;
            for( i = lena; i > point; i--)//输出整数部分
                printf("%d",ans[i]);
            int p = 0;
            while( ans[p] == 0 && p <= i)//删除后面多余的0
                p++;
            if( i >= p)
                printf(".");
            for( ; i >= p; i--)
                printf("%d",ans[i]);
            puts("");
        }
    }

    return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cherish0222/article/details/78934637
个人分类: 高精度计算
上一篇剑指offer——不用加减乘除做加法
下一篇剑指offer——重建二叉树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭