题目描述
小明要去一个国家旅游。这个国家有N个城市,编号为1~N,并且有M条道路连接着,小明准备从其中一个城市出发,并只往东走到城市i停止。
所以他就需要选择最先到达的城市,并制定一条路线以城市i为终点,使得线路上除了第一个城市,每个城市都在路线前一个城市东面,并且满足这个前提下还希望游览的城市尽量多。
现在,你只知道每一条道路所连接的两个城市的相对位置关系,但并不知道所有城市具体的位置。现在对于所有的i,都需要你为小明制定一条路线,并求出以城市i为终点最多能够游览多少个城市。
输入输出格式
输入格式:
输入的第1行为两个正整数N, M。
接下来M行,每行两个正整数x, y,表示了有一条连接城市x与城市y的道路,保证了城市x在城市y西面。
输出格式:
输出包括N行,第i行包含一个正整数,表示以第i个城市为终点最多能游览多少个城市。
输入输出样例
输入样例#1:
5 6
1 2
1 3
2 3
2 4
3 4
2 5
输出样例#1:
1
2
3
4
3
说明
均选择从城市1出发可以得到以上答案。
对于20%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 100000,M ≤ 200000。
这个题是拓扑+dp
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#define MAXN 200000
using namespace std;
int n,m,head[MAXN],tot,nxt[MAXN],dp[MAXN],r[MAXN];
bool vis[MAXN];
struct Edge
{
int from,to;
}e[MAXN<<1];
void build(int f,int t)
{
e[++tot].from = f;
e[tot].to = t;
nxt[tot] = head[f];
head[f] = tot;
}
queue<int>q;
void dfs(int x)
{
for(int i = head[x]; i ; i = nxt[i])
{
int f = e[i].from;
int t = e[i].to;
r[t]--;
dp[t] = max(dp[t],dp[f]+1);
if(r[t]==0)
dfs(t);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1; i <=m; i ++)
{
int x,y;
scanf("%d%d",&x,&y);
r[y]++;
build(x,y);
}
for(int i = 1; i <= n; i ++)
{
if(r[i] == 0)
vis[i] = 1;
dp[i] = 1;
}
for(int i = 1; i <= n; i ++)
if(vis[i])
{
dfs(i);
}
for(int i = 1; i <= n; i ++)
{
printf("%d\n",dp[i]);
}
return 0;
}