联邦学习综述:挑战、方法和未来方向

联邦学习:挑战、方法和未来方向

IEEE SIGNAL PROCESSING MAGAZINE, 2020

本文可能在基础上拓展了很多新的应用场景和思路,值得参考,联邦学习中可以考虑的点其实有很多。


一、简介

随着移动设备等算力增强,信息传输的隐私问题日渐让人担忧。可以考虑在本地存储和使用模型但是集中训练机器学习模型的方式,比如手机用户的建模和个性化。联邦学习可以使得模型能够直接在远程设备进行训练。

智能手机

例如智能手机的输入法补全功能,用户处于隐私不想公开自己的数据,联邦学习可以在不泄露用户隐私信息的情况下完成该功能的大规模学习,采用所有用户的历史文本信息训练模型。
在这里插入图片描述

组织机构

比如医院包含很多病人的信息,能够预测健康情况,但是医院的隐私要求很严格,甚至是伦理问题,联邦学习能为这些应用解决问题,能够在保证隐私的情况下多方联合学习。

物联网

像一些无线车辆、智能家居等会有很多传感器,比如自动驾驶车辆需要更新交通数据模型,但是采用本地数据很难建模,因为没有其他设备间的联系,联邦学习可以在保证用户隐私的条件下训练模型,解决此类问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值