【论文笔记】基于多分类器和对抗语料判别器的多语料库语音情感识别

本文介绍了一种通过多任务学习和对抗学习策略来解决语音情感识别中语料库差异问题的方法。研究者提出使用共享编码器、多个分类器与语料库判别器,旨在消除跨语料库的情感定义差异,减少信息损失,并在小规模语料如EmoDB和CREMA-D上展示了改进效果。
摘要由CSDN通过智能技术生成

Reconciliation of Multiple Corpora for Speech Emotion Recognition by Multiple Classifiers with an Adversarial Corpus Discriminator

INTERSPEECH 2020 - Fairy Devices, Japan

关键词: 语音情感、多任务学习、对抗学习、多语料库


摘要

概述: 利用多任务学习和对抗学习压缩语料库特有因素以更好利用语料库,本篇文章研究的是训练数据的生成问题,也是一个新的思路
情感计算中主要的问题就是语料库的评价指标不一致,之前大多数研究的做法都是抛弃或者合并一些情感,但是会造成数据损失,再者语料库本身的许多特质也造成不能充分利用整个语料库。本文提出一个共享情感编码器,多个分类器和对抗语料库判别器,采用多任务学习和对抗学习训练。


简介

  • SER中使用很多神经网络模型
  • 虽然标签一样,但是跨语料库的情感表达是不一样的,不同语料库之间的情感定义也是不同的,我们需要消除他们之间的差异而不受单个语料库自身因素(语言、录音环境等)的限制
  • 之前的相关研究有的丢弃非共同标签的数据,或者合并为公共标签;或者用对抗学习合并域,这些方法改变了情感表达的边界或者抛弃了一些类别,导致大量的信息损失;直接使用多分类器,每个分类器对应一个语料库,但是没有消除语料库本身因素的影响

方法

模型结构

模型结构
语料库之间共享一个编码器,输入的语音特征被映射到嵌入空间,无论数据来自哪个数据库。每个语料库都对应一个分类器,这是为了保证不丢弃或者合并语料库中的情绪。除此之外还有一个对语料库标签的判别器。
只用多分类器,就无法消除语料库自身因素的影响,不同语料库的数据在特征空间的距离较远;只用对抗学习,只有但分类器的话,分类结果只有积极和消极两个,情感的内部信息就会丢失,所以将两者进行结合。

对抗学习

总损失函数的定义:
L = L e m o + L c o r \mathcal{L}=\mathcal{L}_{emo}+\mathcal{L}_{cor} L

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值