Reconciliation of Multiple Corpora for Speech Emotion Recognition by Multiple Classifiers with an Adversarial Corpus Discriminator
INTERSPEECH 2020 - Fairy Devices, Japan
关键词: 语音情感、多任务学习、对抗学习、多语料库
摘要
概述: 利用多任务学习和对抗学习压缩语料库特有因素以更好利用语料库,本篇文章研究的是训练数据的生成问题,也是一个新的思路
情感计算中主要的问题就是语料库的评价指标不一致,之前大多数研究的做法都是抛弃或者合并一些情感,但是会造成数据损失,再者语料库本身的许多特质也造成不能充分利用整个语料库。本文提出一个共享情感编码器,多个分类器和对抗语料库判别器,采用多任务学习和对抗学习训练。
简介
- SER中使用很多神经网络模型
- 虽然标签一样,但是跨语料库的情感表达是不一样的,不同语料库之间的情感定义也是不同的,我们需要消除他们之间的差异而不受单个语料库自身因素(语言、录音环境等)的限制
- 之前的相关研究有的丢弃非共同标签的数据,或者合并为公共标签;或者用对抗学习合并域,这些方法改变了情感表达的边界或者抛弃了一些类别,导致大量的信息损失;直接使用多分类器,每个分类器对应一个语料库,但是没有消除语料库本身因素的影响
方法
模型结构
语料库之间共享一个编码器,输入的语音特征被映射到嵌入空间,无论数据来自哪个数据库。每个语料库都对应一个分类器,这是为了保证不丢弃或者合并语料库中的情绪。除此之外还有一个对语料库标签的判别器。
只用多分类器,就无法消除语料库自身因素的影响,不同语料库的数据在特征空间的距离较远;只用对抗学习,只有但分类器的话,分类结果只有积极和消极两个,情感的内部信息就会丢失,所以将两者进行结合。
对抗学习
总损失函数的定义:
L = L e m o + L c o r \mathcal{L}=\mathcal{L}_{emo}+\mathcal{L}_{cor} L