题目
这道题思路非常妙,采用了由边界向里面扩展的方法。
题目要求是将非边界的0填充为x,与边界0直接或者间接相连的0不需要填充,如果直接判断0是否被包围是难以判断的,但是将所有边界0对应的0连通区域找出来是简单的,因此,可以从边界0出发,DFS判断每个连通区域,对其中的0进行标记,那么标记过的0就是不需要改为x的0。
之后将未标记过的0改为x即可。
class Solution {
private:
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
int n,m;
public:
void solve(vector<vector<char>>& board) {
n=board.size();
if(n==0) return;
m=board[0].size();
for(int i=0;i<n;i++){
dfs(board,i,0);
dfs(board,i,m-1);
}
for(int i=0;i<m;i++){
dfs(board,0,i);
dfs(board,n-1,i);
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(board[i][j]=='A'){
board[i][j]='O';
}else if(board[i][j]=='O'){
board[i][j]='X';
}
}
}
}
void dfs(vector<vector<char>>& board,int x,int y){
if(x<0||x>=n||y<0||y>=m||board[x][y]!='O'){
return;
}
board[x][y]='A';
for(int i=0;i<4;i++){
int xx=x+dx[i];
int yy=y+dy[i];
dfs(board,xx,yy);
}
}
};