信息/信息熵/相对熵/联合熵/条件熵/交叉熵/信息增益/信息增益率/基尼系数

信息

I ( X = x i ) = − log ⁡ 2 p ( x i ) I(X=x_i)=-\log_2{p(x_i)} I(X=xi)=log2p(xi)
公式中的负号是为了确保信息为0/正;
底数:只需满足大概率事件X对应于高的信息量即可。
I(x):表示随机变量的信息;
p(xi):当xi发生时的概率。
一个具体事件的信息量应该是随着其发生概率而递减的,且不能为负。

在信息论和概率论中,熵度量随机变量的不确定性。熵又称为自信息(self-information),可以视为描述一个随机变量的不确定性的数量。信息熵考虑随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望,计算公式:
H ( X ) = ∑ i = 1 n p ( x i ) I ( x i ) = − ∑ i = 1 n p ( x i ) log ⁡ b p ( x i ) H(X)=\sum_{i=1}^np(x_i)I(x_i)=-\sum_{i=1}^np(x_i)\log_bp(x_i) H(X)=i=1np(xi)I(xi)=i=1np(xi)logbp(xi)
如果n表示X变量取值种类,那么p(xi)表示X变量取xi值占总体样本的比例。
熵只依赖X的分布,和X的取值没有关系,熵是用来度量不确定性。熵越大,表明X=xi的不确定性越大。反之亦然。在机器学习分类中,熵越大表明这个类别的不确定性更大,反之越小。当随机变量的取值为两个时,熵随概率的变化曲线如图:
在这里插入图片描述
当p=0/1时,H§=0,随机变量完全没有不确定性;
当p=0.5时,H§=1,此时随机变量的不确定性最大。
示例:
X = [1 0 1 1 0] Y = [1 1 1 0 0]
p(X=0)=2/5 p(X=1)=3/5
p(Y=0)=2/5 p(Y=1)=3/5
H ( X ) = − 2 / 5 × log ⁡ ( 2 / 5 ) − 3 / 5 × log ⁡ ( 3 / 5 ) = 0.292 H(X)=-2/5\times\log(2/5)-3/5\times\log(3/5)=0.292 H(X)=2/5×log(2/5)3/5×log(3/5)=0.292
H ( Y ) = − 2 / 5 × log ⁡ ( 2 / 5 ) − 3 / 5 × log ⁡ ( 3 / 5 ) = 0.292 H(Y)=-2/5\times\log(2/5)-3/5\times\log(3/5)=0.292 H(Y)=2/5×log(2/5)3/5×log(3/5)=0.292

相对熵

相对熵(relative entropy)又称Kullback-Leibler差异(Kullback-Leibler divergence)或简称KL距离,是衡量相同事件空间里两个概率分布相对差距的测度。两个概率分布 p ( x ) p(x) p(x) q ( x ) q(x) q(x)的相对熵定义为:
D ( p ∣ ∣ q ) = ∑ x ∈ X p ( x ) log ⁡ p ( x ) q ( x ) D(p||q)=\sum_{x\in X}p(x)\log\frac{p(x)}{q(x)} D(p∣∣q)=xXp(x)logq(x)p(x)
该定义中约定 0 log ⁡ 0 q ( x ) = 0 0\log\frac{0}{q(x)}=0 0logq(x)0=0 p ( x ) log ⁡ p ( x ) 0 = ∞ p(x)\log\frac{p(x)}{0}=\infty p(x)log0p(x)=
表示成期望值为:
D ( p ∣ ∣ q ) = E p ( log ⁡ p ( x ) q ( x ) ) D(p||q)=E_p(\log\frac{p(x)}{q(x)}) D(p∣∣q)=Ep(logq(x)p(x))

交叉熵

如果一个随机变量 X   p ( x ) X~p(x) X p(x) q ( x ) q(x) q(x)为用于近似 p ( x ) p(x) p(x)的概率分布,那么随机变量X和模型q之间的交叉熵(cross entropy)定义为:
H ( X , q ) = H ( X ) + D ( p ∣ ∣ q ) = − ∑ x p ( x ) log ⁡ q ( x ) = E p ( log ⁡ 1 q ( x ) ) H(X,q)=H(X)+D(p||q)=-\sum_xp(x)\log q(x)=E_p(\log\frac{1}{q(x)}) H(X,q)=H(X)+D(p∣∣q)=xp(x)logq(x)=Ep(logq(x)1)
由此,可以定义语言 L = ( X i )   p ( x ) L=(X_i)~p(x) L=(Xi) p(x)与其模型q的交叉熵为:
H ( L , q ) = − lim ⁡ n → ∞ 1 n ∑ x 1 n p ( x 1 n ) log ⁡ q ( x 1 n ) H(L,q)=-\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{x^n_1}p(x^n_1)\log q(x^n_1) H(L,q)=limnn1x1np(x1n)logq(x1n)
根据信息论的定理:假定语言L是静态(stationary)遍历的(ergodic)随机过程,L与其模型q的交叉熵计算公式就变为:
H ( L , q ) = − lim ⁡ n → ∞ 1 n log ⁡ q ( x 1 n ) H(L,q)=-\lim_{n\rightarrow\infty}\frac{1}{n}\log q(x^n_1) H(L,q)=limnn1logq(x1n)
可以近似地采用如下计算方法:
H ( L , q ) ≈ − 1 n log ⁡ q ( x 1 n ) H(L,q)\approx-\frac{1}{n}\log q(x^n_1) H(L,q)n1logq(x1n)
困惑度perplexity:在设计语言模型时,通常用困惑度来代替交叉熵衡量语言模型的好坏。给定语言L的样本 l l n = l 1 , . . . , l n l^n_l=l_1,...,l_n lln=l1,...,ln,L的困惑度 P P q {PP}_q PPq定义为:
P P q = 2 H ( L , p ) ≈ 2 − 1 n log ⁡ q ( l l n ) = [ q ( l l n ) ] − 1 n {PP}_q=2^{H(L,p)}\approx2^{-\frac{1}{n}\log q(l^n_l)}=[q(l^n_l)]^{-\frac{1}{n}} PPq=2H(L,p)2n1logq(lln)=[q(lln)]n1

联合熵

随机变量X和Y的联合熵:
H ( X , Y ) = ∑ x i ∈ X ∑ y i ∈ Y p ( x i , y i ) I ( x i , y i ) = ∑ x i ∈ X ∑ y i ∈ Y p ( x i , y i ) log ⁡ 1 p ( x i , y i ) H(X,Y)=\sum_{x_i\in X }\sum_{y_i\in Y}p(x_i, y_i)I(x_i, y_i)=\sum_{x_i\in X }\sum_{y_i\in Y}p(x_i, y_i)\log\frac{1}{p(x_i,y_i)} H(X,Y)=xiXyiYp(xi,yi)I(xi,yi)=xiXyiYp(xi,yi)logp(xi,yi)1
可简写为: H ( X , Y ) = − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) H(X,Y)=-\sum_{x, y}p(x, y)\log p(x, y) H(X,Y)=x,yp(x,y)logp(x,y)
联合熵 H ( X , Y ) H(X,Y) H(X,Y)表示随机变量X和Y一起发生时的信息熵,即X和Y一起发生时的确定度,产生的信息量。
上例中:
p(X=0, Y=0)=1/5 p(X=0, Y=1)=1/5
p(X=1, Y=1)=1/5 p(X=1, Y=1)=2/5
H ( X , Y ) = − 1 / 5 × log ⁡ ( 1 / 5 ) − 1 / 5 × log ⁡ ( 1 / 5 ) − 1 / 5 × log ⁡ ( 1 / 5 ) − 2 / 5 × log ⁡ ( 2 / 5 ) = 0.579 H(X, Y)=-1/5\times\log(1/5)-1/5\times\log(1/5)-1/5\times\log(1/5)-2/5\times\log(2/5)=0.579 H(X,Y)=1/5×log(1/5)1/5×log(1/5)1/5×log(1/5)2/5×log(2/5)=0.579
:若有两个不相关的事件X和Y,即 p ( x , y ) = p ( x ) × p ( y ) p(x, y)=p(x)\times p(y) p(x,y)=p(x)×p(y),则两个事件同时发生时获得的信息量应该等于两者各自发生时获得的信息之和,即 H ( X , Y ) = H ( X ) + H ( Y ) H(X, Y)=H(X)+H(Y) H(X,Y)=H(X)+H(Y)

条件熵

随机变量X在给定条件下随机变量Y的条件熵,定义描述为:X给定条件下Y的条件概率分布的熵,公式:
H ( Y ∣ X ) = ∑ x i ∈ X p ( x i ) H ( Y ∣ X = x i ) = ∑ x i ∈ X p ( x i ) ∑ y j ∈ Y p ( y i ∣ x i ) log ⁡ 1 p ( y j ∣ x i ) = ∑ x i ∈ X ∑ y j ∈ Y p ( x i ) p ( y j ∣ x i ) log ⁡ 1 p ( y j ∣ x i ) = ∑ x i , y j p ( x i , y j ) log ⁡ 1 p ( y j ∣ x i ) \begin{aligned} H(Y|X) &=\sum_{x_i\in X }p(x_i)H(Y|X=x_i) \\ &=\sum_{x_i\in X }p(x_i)\sum_{y_j\in Y }p(y_i|x_i)\log\frac{1}{p(y_j|x_i)} \\ &=\sum_{x_i\in X }\sum_{y_j\in Y }p(x_i)p(y_j|x_i)\log\frac{1}{p(y_j|x_i)} \\ &=\sum_{x_i, y_j }p(x_i, y_j)\log\frac{1}{p(y_j|x_i)} \end{aligned} H(YX)=xiXp(xi)H(YX=xi)=xiXp(xi)yjYp(yixi)logp(yjxi)1=xiXyjYp(xi)p(yjxi)logp(yjxi)1=xi,yjp(xi,yj)logp(yjxi)1
可简写为: H ( Y ∣ X ) = ∑ x , y p ( x , y ) log ⁡ 1 p ( y ∣ x ) H(Y|X)=\sum_{x, y}p(x, y)\log\frac{1}{p(y|x)} H(YX)=x,yp(x,y)logp(yx)1
条件熵与联合熵的关系
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)
推导过程:
H ( Y ∣ X ) = − ∑ x , y p ( x , y ) log ⁡ p ( y ∣ x ) = − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) p ( x ) = − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) + ∑ x , y p ( x , y ) log ⁡ p ( x ) = − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) + ∑ x ( ∑ y p ( x , y ) ) log ⁡ p ( x ) = − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) + ∑ x ( p ( x ) ) log ⁡ p ( x ) = H ( X , Y ) − H ( X ) \begin{aligned} H(Y|X) &=-\sum_{x,y}p(x, y)\log p(y|x) \\ &=-\sum_{x,y}p(x, y)\log \frac{p(x, y)}{p(x)} \\ &=-\sum_{x,y}p(x, y)\log p(x, y)+\sum_{x,y}p(x, y)\log p(x) \\ &=-\sum_{x,y}p(x, y)\log p(x, y)+\sum_{x}(\sum_yp(x, y))\log p(x) \\ &=-\sum_{x,y}p(x, y)\log p(x, y)+\sum_{x}(p(x))\log p(x) \\ &=H(X, Y)-H(X) \end{aligned} H(YX)=x,yp(x,y)logp(yx)=x,yp(x,y)logp(x)p(x,y)=x,yp(x,y)logp(x,y)+x,yp(x,y)logp(x)=x,yp(x,y)logp(x,y)+x(yp(x,y))logp(x)=x,yp(x,y)logp(x,y)+x(p(x))logp(x)=H(X,Y)H(X)

互信息

互信息量定义为后验概率和先验概率比值的对数:
I ( x i ; y i ) = log ⁡ p ( x i ∣ y i ) p ( x i ) I(x_i; y_i)=\log\frac{p(x_i|y_i)}{p(x_i)} I(xi;yi)=logp(xi)p(xiyi)
互信息(平均互信息量):
I ( X ; Y ) = ∑ x i ∈ X ∑ y i ∈ Y p ( x i , y i ) log ⁡ p ( x i ∣ y i ) p ( x i ) I(X; Y)=\sum_{x_i \in X}\sum_{y_i \in Y}p(x_i, y_i)\log\frac{p(x_i|y_i)}{p(x_i)} I(X;Y)=xiXyiYp(xi,yi)logp(xi)p(xiyi)
可简写为: I ( X ; Y ) = ∑ x , y p ( x , y ) log ⁡ p ( x ∣ y ) p ( x ) I(X; Y)=\sum_{x, y}p(x, y)\log\frac{p(x|y)}{p(x)} I(X;Y)=x,yp(x,y)logp(x)p(xy)
互信息的性质
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) = I ( Y ; X ) I(X; Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)=I(Y; X) I(X;Y)=H(X)H(XY)=H(Y)H(YX)=I(Y;X)
互信息的理解
H ( X ) H(X) H(X)是X的不确定度, H ( X ∣ Y ) H(X|Y) H(XY)是Y已知时,X的不确定度,则 I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X; Y)=H(X)-H(X|Y) I(X;Y)=H(X)H(XY)表示Y已知,使得X的不确定度减少了 I ( X ; Y ) I(X; Y) I(X;Y)。Y已知时,X的不确定度为 H ( X ∣ Y ) = H ( X ) − I ( X ; Y ) H(X|Y)=H(X)-I(X; Y) H(XY)=H(X)I(X;Y)


决策树 - 信息增益,信息增益率,基尼系数
决策树是表示基于特征对实例进行分类的树形结构。从给定的训练数据集中 ,依据特征选择的准则,递归的选择最优划分特征,并根据此特征将训练数据进行分割,使得各子数据集有一个最好的分类的过程。决策树算法的三要素:特征选择;决策树生成;决策树剪枝。
构建决策树的基本思想:随着树的深度的增加,结点的熵迅速地降低,熵降低的速度越快越好,就能得到一颗较矮的树。

信息增益(ID3算法)

**信息增益(information gain)**在决策树算法中理解为使用划分前后集合熵的差值,来衡量使用当前特征对于样本集合划分效果的好坏,是用来选择特征的指标,信息增益越大,则这个特征的选择性越好。在概率中定义为:待分类的集合的熵和选定某个特征的条件熵之差(信息熵-条件熵),即:
I G ( Y ∣ X ) = H ( Y ) − H ( Y ∣ X ) IG(Y|X)=H(Y)-H(Y|X) IG(YX)=H(Y)H(YX)
示例:
随机变量X - [矮 矮 矮 高 矮 矮 高 中 中 高 矮 矮 ]
随机变量Y - [不嫁 不嫁 嫁 嫁 不嫁 不嫁 嫁 嫁 嫁 嫁 不嫁 不嫁]
H ( Y ) = − 6 / 12 × log ⁡ ( 6 / 12 ) − 6 / 12 × log ⁡ ( 6 / 12 ) = 0.301 H(Y)=-6/12\times\log(6/12)-6/12\times\log(6/12)=0.301 H(Y)=6/12×log(6/12)6/12×log(6/12)=0.301
H ( Y ∣ X = 矮 ) = − 1 / 7 × log ⁡ ( 1 / 7 ) − 6 / 7 × log ⁡ ( 6 / 7 ) = 0.178 H(Y|X=矮)=-1/7\times\log(1/7)-6/7\times\log(6/7)=0.178 H(YX=)=1/7×log(1/7)6/7×log(6/7)=0.178
H ( Y ∣ X = 中 ) = − 1 × log ⁡ ( 1 ) − 0 = 0 H(Y|X=中)=-1\times\log(1)-0=0 H(YX=)=1×log(1)0=0
H ( Y ∣ X = 高 ) = − 1 × log ⁡ ( 1 ) − 0 = 0 H(Y|X=高)=-1\times\log(1)-0=0 H(YX=)=1×log(1)0=0
p ( X = 矮 ) = 7 / 12 p(X=矮)=7/12 p(X=)=7/12 p ( X = 中 ) = 2 / 12 p(X=中)=2/12 p(X=)=2/12 p ( X = 高 ) = 3 / 12 p(X=高)=3/12 p(X=)=3/12
可得: H ( Y ∣ X ) = ∑ x i ∈ X p ( x i ) H ( Y ∣ X = x i ) = 7 / 12 × 0.178 + 2 / 12 × 0 + 3 / 12 × 0 = 0.103 H(Y|X)=\sum_{x_i\in X }p(x_i)H(Y|X=x_i)=7/12\times0.178+2/12\times0+3/12\times0=0.103 H(YX)=xiXp(xi)H(YX=xi)=7/12×0.178+2/12×0+3/12×0=0.103
那么信息增益为0.301-0.103=0.198,即表示在知道了身高信息后,嫁/不嫁的不确定度由0.301降为了0.198
缺点:信息增益偏向取值较多的特征。
在决策树中,可以这么理解(参考周志华的西瓜书):
假设当前样本集合 D D D中第 k k k类样本所占的比例为 p k ( k = 1 , 2 , . . . , ∣ Y ∣ ) p_k(k=1,2,..., |Y|) pk(k=1,2,...,Y),则 D D D的信息熵定义为:
E n t ( D ) = − ∑ k = 1 ∣ Y ∣ p k log ⁡ 2 p k Ent(D)=-\sum_{k=1}^{|Y|}p_k\log_2p_k Ent(D)=k=1Ypklog2pk
假定离散属性 a a a V V V个可能的取值 a 1 , a 2 , . . . , a V {a^1, a^2, ..., a^V} a1,a2,...,aV。若使用a对样本集 D D D进行划分,则会产生 D D D个分支结点,其中第 v v v个分支结点包含了 D D D中所有在属性 a a a上取值为 a v a^v av的样本,记为 D v D^v Dv。可以根据信息熵的公式计算出 D v D^v Dv的信息熵。再考虑到不同的分支结点所包含的样本数不同,给分支结点赋予权重 ∣ D v ∣ ∣ D ∣ \frac{|D^v|}{|D|} DDv,即样本数越多的分支结点的影响越大。然后就可以计算出属性 a a a对样本集 D D D进行划分所获得的“信息增益”:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D, a)=Ent(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)
信息增益越大,表示使用属性a来进行划分,信息熵降低的越多。ID3(Iterative Dichotomiser迭代二分器)算法决策树学习算法中就是以信息增益的准则对属性进行划分的,即选择属性 a ∗ = arg max ⁡ a ∈ A   G a i n ( D , a ) a_*=\underset{a \in A}{\operatorname {arg\, max}}\,Gain(D, a) a=aAargmaxGain(D,a)

信息增益率/比(C4.5算法)

信息增益率 = 惩罚参数 * 信息增益,本质是在信息增益的基础之上乘上一个惩罚参数。特征个数越多时,惩罚参数较小;特征个数较少时,惩罚参数较大。
惩罚参数的计算公式: 惩罚参数 = 1 H ( X ) 惩罚参数=\frac{1}{H(X)} 惩罚参数=H(X)1,即数据集Y以特征X作为随机变量的熵的倒数,换句话说是将特征X取值相同的样本划分到同一个子集中。
I G R ( Y ∣ X ) = H ( Y ) − H ( Y ∣ X ) H ( X ) IG_R(Y|X)=\frac{H(Y)-H(Y|X)}{H(X)} IGR(YX)=H(X)H(Y)H(YX)
缺点:信息增益率偏向取值较少的特征。因此,C4.5并不是直接选择信息增益率最大的属性作为划分属性,而是之前先通过一遍筛选,先把信息增益低于平均水平的属性剔除掉,之后从剩下的属性中选择信息增益率最高的,这样就兼顾了两个方面。
在C4.5决策树算法中,信息增益率:
G a i n r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) Gain_ratio(D, a)=\frac{Gain(D, a)}{IV(a)} Gainratio(D,a)=IV(a)Gain(D,a)
其中, I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ log ⁡ 2 ∣ D v ∣ ∣ D ∣ IV(a)=-\sum_{v=1}^{V}{\frac{|D^v|}{|D|}\log_2\frac{|D^v|}{|D|}} IV(a)=v=1VDDvlog2DDv称为属性a的“固有值”。属性a的可能取值数目越多(即 V V V越大),则 I V ( a ) IV(a) IV(a)的值通常会越大。
需要注意的是,信息增益率准则对可取值数目较少的属性有所偏好,所以C4.5不是直接选择增益率最大的候选划分属性,而是使用了一个启发式:先从候选划分属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的。

基尼系数(CART算法-分类树)

**基尼系数(Gini index)**表示在样本集合中一个随机选中的样本被分错的概率。基尼系数越小表示集合中被选中的样本被分错的概率越小,即集合的纯度越高,反之集合纯度越低。计算公式为:基尼系数=样本被选中的概率*样本被分错的概率。表示为:
G i n i ( p ) = ∑ k = 1 K p k ( 1 − p k ) = 1 − ∑ k = 1 K p k 2 Gini(p)=\sum_{k=1}^Kp_k(1-p_k)=1-\sum_{k=1}^Kp_k^2 Gini(p)=k=1Kpk(1pk)=1k=1Kpk2
p k p_k pk表示选中的样本属于 k k k类别的概率,则这个样本被分错的概率是 1 − p k 1-p_k 1pk
样本集合中有 K K K个类别,一个随机选中的样本可以属于这 K K K个类别中的任意一个,因此对类别就加起来求和;
当目标是二分类的时候, G i n i ( p ) = 2 p ( 1 − p ) Gini(p)=2p(1-p) Gini(p)=2p(1p)
参考周志华的西瓜书
数据集 D D D的纯度可用基尼值来度量:
G i n i ( D ) = ∑ k = 1 ∣ Y ∣ ∑ k ′ ≠ k p k p k ′ = 1 − ∑ k = 1 ∣ Y ∣ p k 2 Gini(D)=\sum_{k=1}^{|Y|}\sum_{k'\neq k}p_kp_k'=1-\sum_{k=1}^{|Y|}p_k^2 Gini(D)=k=1Yk=kpkpk=1k=1Ypk2
简单的说, G i n i ( D ) Gini(D) Gini(D)反映了从数据集 D D D中随机抽取两个样本,其类别标记不一致的概率。因此 G i n i ( D ) Gini(D) Gini(D)的值越小,表明数据集 D D D的纯度越高。
同理,属性 a a a的基尼指数定义为:
G i n i i n d e x ( D , a ) = ∑ v = 1 V ∣ D v ∣ ∣ D ∣ G i n i ( D v ) Gini_index(D, a)=\sum_{v=1}^{V}\frac{|D^v|}{|D|}Gini(D^v) Giniindex(D,a)=v=1VDDvGini(Dv)
于是,在候选属性集合 A A A中,选择那个使得划分后基尼指数最小的属性作为最优划分属性,即 a ∗ = arg min ⁡ a ∈ A   G a i n _ i n d e x ( D , a ) a_*=\underset{a \in A}{\operatorname {arg\, min}}\,Gain\_index(D, a) a=aAargminGain_index(D,a)
文字说明:CART(Classification and Regression Tree)是二叉树,即当使用某个特征划分样本集合时,只有两个集合,一个是等于给定的特征值的样本集合,另一个是不等于给定的特征值的样本集合。实质上是对拥有多个取值的特征的二值处理。
公式说明
D 1 = { D ∣ A = a } D_1=\{D|A=a\} D1={DA=a}
D 2 = { D ∣ A ≠ a } D_2=\{D|A\neq a\} D2={DA=a}
那么 G i n i ( D , A ) = ∣ D 1 ∣ ∣ D ∣ G i n i ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ G i n i ( D 2 ) Gini(D, A)=\frac{|D_1|}{|D|}Gini(D_1)+\frac{|D_2|}{|D|}Gini(D_2) Gini(D,A)=DD1Gini(D1)+DD2Gini(D2)
最优划分属性,即对一个具有超过2个取值的特征,需要计算以每一个取值为划分点,对样本集D划分之后子集的基尼系数,其中使得基尼系数最小的划分点就是使用特征A对样本集合D进行划分的最佳划分点。
示例:

label=0label=1总计
<36.512714141
>36.510356159
总计23070
a = G i n i ( l e f t [ a g e < 36.5 ] ) = 1 − ( 127 141 ) 2 − ( 14 141 ) 2 = 0.178864 a=Gini(left[age<36.5])=1-(\frac{127}{141})^2-(\frac{14}{141})^2=0.178864 a=Gini(left[age<36.5])=1(141127)2(14114)2=0.178864
b = G i n i ( r i g h t [ a g e > 36.5 ] ) = 1 − ( 103 159 ) 2 − ( 56 159 ) 2 = 0.456311 b=Gini(right[age>36.5])=1-(\frac{103}{159})^2-(\frac{56}{159})^2=0.456311 b=Gini(right[age>36.5])=1(159103)2(15956)2=0.456311
G i n i ( 36.5 ) = 141 300 × a + 159 300 × b = 0.358 Gini(36.5)=\frac{141}{300}\times a+\frac{159}{300}\times b=0.358 Gini(36.5)=300141×a+300159×b=0.358
参考链接:
信息熵、信息增益、信息增益率、gini、woe、iv、VIF
决策树–信息增益,信息增益比,Geni指数的理解
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值