一、二叉查找树的定义
定义:二叉查找树(Binary Search Tree),又被称为二叉搜索树。设x为二叉查找树中的一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。
在二叉查找树中:
(1) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3) 任意节点的左、右子树也分别为二叉查找树。
(4) 没有键值相等的节点(no duplicate nodes)。
二、二叉查找树的C实现
1. 节点定义
1.1 节点定义
typedef int Type;
typedef struct BSTreeNode{
Type key; // 关键字(键值)
struct BSTreeNode *left; // 左孩子
struct BSTreeNode *right; // 右孩子
struct BSTreeNode *parent; // 父结点
}Node, *BSTree;
二叉查找树的节点包含的基本信息:
(1) key – 它是关键字,是用来对二叉查找树的节点进行排序的。
(2) left – 它指向当前节点的左孩子。
(3) right – 它指向当前节点的右孩子。
(4) parent – 它指向当前节点的父结点。
1.2 创建节点
static Node* create_bstree_node(Type key, Node *parent, Node *left, Node* right)
{
Node* p;
if ((p = (Node *)malloc(sizeof(Node))) == NULL)
return NULL;
p->key = key;
p->left = left;
p->right = right;
p->parent = parent;
return p;
}
2 遍历
2.1 前序遍历
若二叉树非空,则执行以下操作:
(01) 访问根结点;
(02) 先序遍历左子树;
(03) 先序遍历右子树。
前序遍历代码
void preorder_bstree(BSTree tree)
{
if(tree != NULL)
{
printf("%d ", tree->key);
preorder_bstree(tree->left);
preorder_bstree(tree->right);
}
}
2.2 中序遍历
若二叉树非空,则执行以下操作:
(01) 中序遍历左子树;
(02) 访问根结点;
(03) 中序遍历右子树。
中序遍历代码
void inorder_bstree(BSTree tree)
{
if(tree != NULL)
{
inorder_bstree(tree->left);
printf("%d ", tree->key);
inorder_bstree(tree->right);
}
}
2.3 后序遍历
若二叉树非空,则执行以下操作:
(01) 后序遍历左子树;
(02) 后序遍历右子树;
(03) 访问根结点。
后序遍历代码
void postorder_bstree(BSTree tree)
{
if(tree != NULL)
{
postorder_bstree(tree->left);
postorder_bstree(tree->right);
printf("%d ", tree->key);
}
}
通过以下例子介绍这些遍历方法
对于上面的二叉树而言,
(01) 前序遍历结果: 3 1 2 5 4 6
(02) 中序遍历结果: 1 2 3 4 5 6
(03) 后序遍历结果: 2 1 4 6 5 3
注意:二叉搜索树的 中序遍历是有序的
3. 查找
递归版本的代码
Node* bstree_search(BSTree x, Type key)
{
if (x==NULL || x->key==key)
return x;
if (key < x->key)
return bstree_search(x->left, key);
else
return bstree_search(x->right, key);
}
非递归版本的代码
Node* iterative_bstree_search(BSTree x, Type key)
{
while ((x!=NULL) && (x->key!=key))
{
if (key < x->key)
x = x->left;
else
x = x->right;
}
return x;
}
4.最大值和最小值
查找最大值的代码
Node* bstree_maximum(BSTree tree)
{
if (tree == NULL)
return NULL;
while(tree->right != NULL)
tree = tree->right;
return tree;
}
查找最小值代码
Node* bstree_minimun(BSTree tree)
{
if(tree!=NULL)
return NULL;
while(tree->left!=NULL)
tree=tree->left;
return tree;
}
5.前驱和后继
节点的前驱:是该节点的左子树中的最大节点。
节点的后继:是该节点的右子树中的最小节点。
查找前驱节点的代码
Node* bstree_predecessor(Node *x)
{
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x->left != NULL)
return bstree_maximum(x->left);
// 如果x没有左孩子。则x有以下两种可能:
// (1) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (2) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找
//到的这个"最低的父结点"就是"x的前驱结点"。
Node* y = x->parent;
while ((y!=NULL) && (x==y->left))
{
x = y;
y = y->parent;
}
return y;
}
查找后继节点的代码
Node* bstree_successor(Node *x)
{
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x->right != NULL)
return bstree_minimum(x->right);
// 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
Node* y = x->parent;
while ((y!=NULL) && (x==y->right))
{
x = y;
y = y->parent;
}
return y;
}
6.插入
插入节点的代码
static Node* bstree_insert(BSTree tree, Node *z)
{
Node *y = NULL;
Node *x = tree;
// 查找z的插入位置
while (x != NULL)
{
y = x;
if (z->key < x->key)
x = x->left;
else
x = x->right;
}
z->parent = y;
if (y==NULL)
tree = z;
else if (z->key < y->key)
y->left = z;
else
y->right = z;
return tree;
}
Node* insert_bstree(BSTree tree, Type key)
{
Node *z; // 新建结点
// 如果新建结点失败,则返回。
if ((z=create_bstree_node(key, NULL, NULL, NULL)) == NULL)
return tree;
return bstree_insert(tree, z);
}
bstree_insert(tree, z)是内部函数,它的作用是:将结点(z)插入到二叉树(tree)中,并返回插入节点后的根节点。
insert_bstree(tree, key)是对外接口,它的作用是:在树中新增节点,key是节点的值;并返回插入节点后的根节点。
注:本文实现的二叉查找树是允许插入相同键值的节点的!若用户不希望插入相同键值的节点,将bstree_insert()修改为以下代码即可。
static Node* bstree_insert(BSTree tree, Node *z)
{
Node *y = NULL;
Node *x = tree;
// 查找z的插入位置
while (x != NULL)
{
y = x;
if (z->key < x->key)
x = x->left;
else if (z->key > x->key)
x = x->right;
else
{
free(z); // 释放之前分配的系统。
return tree;
}
}
z->parent = y;
if (y==NULL)
tree = z;
else if (z->key < y->key)
y->left = z;
else
y->right = z;
return tree;
}
7.删除
删除某个结点后依然要保持二叉查找树的特性。例子中的删除过程如下:
a、若删除点是叶子结点,则设置其双亲结点的指针为空。
b、若删除点只有左子树,或只有右子树,则设置其双亲结点的指针指向左子树或右子树。
c、若删除点的左右子树均不为空,则:
1)、查询删除点的右子树的左子树是否为空,若为空,则把删除点的右子树替换删除点
2)、若不为空,则继续查询左子树,直到找到最底层的左子树为止。
删除节点的代码
static Node* bstree_delete(BSTree tree, Node *z)
{
Node *x=NULL;
Node *y=NULL;
//z节点如果只有一个孩子或者没有孩子,直接删除让y=z
if ((z->left == NULL) || (z->right == NULL) )
y = z;
//如果有两个孩子,找到z的后继节点
else
y = bstree_successor(z);
//后继节点肯定是没有左孩子的
x = y->right;
//后继节点的有右孩子,让右孩子移到y的位置
if (x != NULL)
x->parent = y->parent;
if (y->parent == NULL)
tree = x;
else if (y == y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
if (y != z)
z->key = y->key;
if (y!=NULL)
free(y);
return tree;
}
Node* delete_bstree(BSTree tree, Type key)
{
Node *z, *node;
if ((z = bstree_search(tree, key)) != NULL)
tree = bstree_delete(tree, z);
return tree;
}