算法效率
有的代码很简洁
比如递归求斐波那契数列:
long long Fib(int N)
{
if (N < 3)
{
return 1;
}
else
{
return Fib(N - 1) + Fib(N - 2);
}
}
代码很短,但是短一定好吗?
算法的好坏怎么确定呢?
这个时候就要涉及时间复杂度与空间复杂度了
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。
算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不再需要特别关注一个算法的空间复杂度。
时间复杂度
定义: 算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。
一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有程序跑起来才知道。
但是每个算法都上机测试很麻烦,所以才有了时间复杂度这个分析方式。
一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度,计算时间复杂度时计算的是基本操作的执行次数。
即: 找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
计算Func1的时间复杂度?
Func1 执行的基本操作次数:
实际中我们计算时间复杂度时,并不一定要计算精确的执行次数,只需要大概执行次数,这里就可以使用大O的渐进表示法
什么是大O的渐进表示法呢?
大O的渐进表示法
大O符号是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项目相乘的常数。
得到的结果就是大O阶。使用大O的渐进表示法以后,Func1的时间复杂度为:
我们可以发现,大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。另外有些算法的时间复杂度存在最好、平均和最坏情况,在实际情况中,我们关注最坏情况下的时间复杂度,即关注算法的最坏运行情况。
(1)
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n",count);
}
计算Func2的时间复杂度?
用大O渐进法表示(忽略最高阶项常数且只保留最高阶项)
即:O(N)
(2)
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++k)
{
++count;
}
for (int k = 0; k < N; ++k)
{
++count;
}
printf("%d\n", count);
}
计算Func3的时间复杂度?
当m和n关系不确定
函数的时间复杂度为O(M+N)
当N远大于M时,时间复杂度为O(N)
当M远大于N时,时间复杂度为 O(M)
当N和M差不多大时,时间复杂度为O(N) or O(M)
(3)
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++k)
{
++count;
}
printf("%d\n",count + N);
}
计算Func4的时间复杂度?
该算法的时间复杂度为O(1)
O(1)并不是代表1次,而是常数次
(4)
const char* strchr(const char* str, int character)
{
while (*str)
{
if (*str == character)
return str;
}
++str;
}
计算strchr的时间复杂度?
时间复杂度是保守的估算,此时该算法最好为O(1),最坏为 O(N)。取最坏O(N)-->(预期管理法)
(5)
void Bubblesort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
计算Bubblesort的时间复杂度
冒泡排序时间复杂度为
第一趟比较:n-1次
第二趟:n-2
第三趟:n-3
...
...
第n-1趟:2
第n趟:1
等差数列前n项和:(首项+尾项)*项数/2
计算时间复杂度不要数循环!!
(6)
int PartSort1(int* a, int left, int right)
{
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
--right;
}
while (left < right && a[left] <= a[keyi])
{
++left;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);
}
该算法的时间复杂度就为O(N)
left找大,right找小,合计起来走了n
(7)
int Binarysearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n - 1;
// [begin,end]: begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end - begin) >> 1);
if (a[mid] < x)
{
begin = mid + 1;
}
else if (a[mid] > x)
{
end = mid - 1;
}
else
{
return mid;
}
}
return -1;
}
计算函数 Binarysearch 的时间复杂度
二分查找,时间复杂度为O(logN),折半查找,最坏情况:,把底数2忽略(写logN默认就是以2为底的)当以别的数为底数时,不可简写,写为
(8)
long long Fac(size_t N)
{
if (0 == N)
return 1;
return Fac(N - 1) * N;
}
计算它的时间复杂度?
递归计算时是多次函数调用累加
Fac(N)->Fac(N-1)->Fac(N-2)->...->Fac(2)->Fac(1)->Fac(0)
所以最后计算出时间复杂度为:O(N)
(9)
long long Fac(size_t N)
{
if (0 == N)
return 1;
for (size_t i = 0; i < N; ++i)
{
//
//
}
return Fac(N - 1) * N;
}
(10)
long long Fib(int N)
{
if (N < 3)
{
return 1;
}
else
{
return Fib(N - 1) + Fib(N - 2);
}
}
等比数列求和
基本操作递归了2^N次,时间复杂度为
题
解法一思路:
1、先冒泡排序
2、遍历,当前值+1,不等于下一个数字就是下一个数
时间复杂度:
int missingNumber(int* nums, int numsSize)
{
if (numsSize == 1&&nums[0]==0)
return 1;
if (numsSize == 1&&nums[0]==1)
return 0;
for(int i=0;i<numsSize-1;i++)
{
for(int j=0;j<numsSize-i-1;j++)
{
if(nums[j]>nums[j+1])
{
int tmp=nums[j];
nums[j]=nums[j+1];
nums[j+1]=tmp;
}
}
}
for(int i=0;i<numsSize;i++)
{
if(nums[i]!=i)
{
return i;
}
}
return numsSize;
}
解法二思路:
用0异或数组每个元素
#include<stdio.h>
int missingNumber(int* nums, int numsSize)
{
int k=0;
for(int i=0;i<numsSize;i++)
{
k^=nums[i];
}
for(int i=0;i<=numsSize;i++)
{
k^=i;
}
printf("%d",k);
return k;
}
时间复杂度:O(N)
解法三思路:
0~n等差数列公式求和,依次减去数组中的值,结果就是消失的数字
int missingNumber(int* nums, int numsSize)
{
int N = numsSize;
int sum = ((0 + N) * (N + 1)) / 2;
for (int i = 0; i < numsSize; ++i)
{
sum -= nums[i];
}
return sum;
}
时间复杂度:O(N)
空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。
空间复杂度不是程序占用了多少字节的空间,知道这个也没太大意义,空间复杂度算的是变量的个数。
空间复杂度计算规则跟时间复杂度类似,也使用大O渐进表示法
tips: 函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,空间复杂度主要通过函数在运行时申请的额外空间确定。
(1)
void Bubblesort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i - 1] > a[i])
{
swap(&a[i - 1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
空间复杂度:O(1)算法额外开辟的空间:i、end、...,都是常数个
(2)
long long* Fibonacci(size_t n)
{
if (n == 0)
return NULL;
long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
}
return fibArray;
}
该算法的空间复杂度:O(N),额外创建了(n+1)个变量
(3)
long long Fac(size_t N)
{
if (N == 0)
return 1;
return Fac(N - 1) * N;
}
该算法的空间复杂度: O(N)
tips:递归空间复杂度计算,也是空间累加,但是不同的是空间可以重复利用
(4)
long long Fib(int N)
{
if (N < 3)
{
return 1;
}
else
{
return Fib(N - 1) + Fib(N - 2);
}
}
由于空间可以重复利用,所以递归求斐波那契数列的空间复杂度是O(N),即递到最深层后空间销毁,再走别的分支
练习题
(1)
方法一
void reverse(int* nums, int begin, int end)
{
while(begin < end)
{
int tmp = nums[begin];
nums[begin] = nums[end];
nums[end] = tmp;
++begin;
--end;
}
}
void rotate(int* nums, int numsSize, int k){
if(k > numsSize)
{
k %= numsSize;
}
reverse(nums, 0, numsSize-1);
reverse(nums, 0, k-1);
reverse(nums, k, numsSize-1);
}
时间复杂度:O(N),空间复杂度O(1)
方法二
void rotate(int* nums, int numsSize, int k)
{
int newArr[numsSize];
for (int i = 0; i < numsSize; ++i)
{
newArr[(i + k) % numsSize] = nums[i];
}
for (int i = 0; i < numsSize; ++i)
{
nums[i] = newArr[i];
}
}
时间复杂度: O(N),空间复杂度: O(N)
(2)
方法1
1. 从前往后遍历nums,找到val第一次出现的位置
2. 将val之后的所有元素整体往前搬移,即删除该val
3. nums中有效元素个数减少一个
循环进行上述操作,直到nums中所有值为val的元素全部删除完
int removeElement(int* nums, int numsSize, int val)
{
while(1)
{
// 1. 在nums中找val出现的位置
int pos = 0;
for(; pos < numsSize; ++pos)
{
if(nums[pos] == val)
{
break;
}
}
// 2. 检测是否找到
if(pos == numsSize)
break;
// 3. 找到值为value的元素--将其删除
for(int j = pos+1; j < numsSize; ++j)
{
nums[j-1] = nums[j];
}
numsSize--;
}
return numsSize;
}
方法一时间复杂度: 空间复杂度:O(1)
方法2
1. 创建一个长度与nums相同的数组temp
2. 遍历nums,将nums中所有与val不同的元素搬移到temp中
3. 将temp中所有元素拷贝回nums中
int removeElement(int* nums, int numsSize, int val)
{
// 1. 申请numSize个元素的新空间
int* temp = (int*)malloc(sizeof(int)*numsSize);
if(NULL == temp)
{
return 0;
}
// 2. 将nums中非value的元素搬移到temp中---尾插到temp中
int count = 0;
for(int i = 0; i < numsSize; ++i)
{
if(nums[i] != val)
{
temp[count] = nums[i];
++count;
}
}
// 3. 将temp中删除val之后的所有元素拷贝到nums中
memcpy(nums, temp, sizeof(int)*count);
free(temp);
return count;
}
方法二: 时间复杂度: O(N) 空间复杂度: O(N)
优化
由题意得,数组中元素个数最大为100,所以不用动态申请,创建含100个元素的数组即可
1. 创建一个100个元素的整形数组temp
2. 遍历nums,将nums中所有与val不同的元素搬移到temp中
3. 将temp中所有元素拷贝回nums中
int removeElement(int* nums, int numsSize, int val)
{
// 1. 申请numSize个元素的新空间
int temp[100];
// 2. 将nums中非value的元素搬移到temp中---尾插到temp中
int count = 0;
for(int i = 0; i < numsSize; ++i)
{
if(nums[i] != val)
{
temp[count] = nums[i];
++count;
}
}
// 3. 将temp中删除val之后的所有元素拷贝到nums中
memcpy(nums, temp, sizeof(int)*count);
return count;
}
方法二优化后: 时间复杂度: O(N) 空间复杂度: O(N)
方法三
原地算法
1.设置一个变量count,用来记录nums中值等于val的元素的个数
2. 遍历nums数组,对于每个元素进行如下操作:
a. 如果num[i]等于val,说明值为val的元素出现了一次,count++
b. 如果nums[i]不等于元素,将nums[i]往前搬移count个位置
因为nums[i]元素之前出现过count个值等于val的元素,已经被删除了
因此次数需要将nums[i]往前搬移
3. 返回删除之后新数组中有效元素个数
int removeElement(int* nums, int numsSize, int val)
{
int count = 0;
for(int i = 0; i < numsSize; ++i)
{
if(nums[i] == val)
{
count++;
}
else
{
nums[i-count] = nums[i];
}
}
return numsSize - count;
}
方法三:时间复杂度:O(N) 空间复杂度:O(1)
(3)
解法
1. 从后往前遍历数组,将nums1和nums2中的元素逐个比较,将较大的元素往nums1末尾进行搬移
2. 第一步结束后,nums2中可能会有数据没有搬移完,将nums2中剩余的元素逐个搬移到nums1
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
// end1、end2:分别标记nums1 和 nums2最后一个有效元素位置
// end标记nums1的末尾,因为nums1和nums2中的元素从后往前往nums1中存放
// ,否则会存在数据覆盖
int end1 = m-1;
int end2 = n-1;
int index = m+n-1;
// 从后往前遍历,将num1或者nums2中较大的元素往num1中end位置搬移
// 直到将num1或者num2中有效元素全部搬移完
while(end1 >= 0 && end2 >= 0)
{
if(nums1[end1] > nums2[end2])
{
nums1[index--] = nums1[end1--];
}
else
{
nums1[index--] = nums2[end2--];
}
}
// num2中的元素可能没有搬移完,将剩余的元素继续往nums1中搬移
while(end2 >= 0)
{
nums1[index--] = nums2[end2--];
}
// num1中剩余元素没有搬移完 ---不用管了,因为num1中剩余的元素本来就在num1中
}
该解法: 时间复杂度:O(m+n),空间复杂度: O(1)