【示例-多任务】Python多进程multiprocessing模块

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象
更多内置方法见 官方文档: multiprocessing — 基于进程的并行

1. 进程的创建

1.1 创建 & 获取Pid
import os
import time
from multiprocessing import Process


def run_proc():
    """子进程要执行的代码"""
    print('子进程运行中,pid=%d...' % os.getpid())  # os.getpid获取当前进程的进程号
    print('子进程将要结束...')

if __name__ == '__main__':
    print('父进程pid: %d' % os.getpid())  # os.getpid获取当前进程的进程号
    p = Process(target=run_proc)
    p.start()
1.2 语法结构

Process([group [, target [, name [, args [, kwargs]]]]])

  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
  • args:给target指定的函数传递的参数,以元组的方式传递
  • kwargs:给target指定的函数传递命名参数
  • name:给进程设定一个名字,可以不设定
  • group:指定进程组,大多数情况下用不到

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)
  • is_alive():判断进程子进程是否还在活着
  • join([timeout]):是否等待子进程执行结束,或等待多少秒
  • terminate():不管任务是否完成,立即终止子进程

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid:当前进程的pid(进程号)
1.3 子进程传参
import os
from time import sleep
from multiprocessing import Process


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()
1.4 多进程 不共享 全局变量
import os
import time
from multiprocessing import Process


nums = [11, 22]

def work1():
    """子进程要执行的代码"""
    print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
    for i in range(3):
        nums.append(i)
        time.sleep(1)
        print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))

def work2():
    """子进程要执行的代码"""
    print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))

if __name__ == '__main__':
    p1 = Process(target=work1)
    p1.start()
    p1.join()

    p2 = Process(target=work2)
    p2.start()

2. 进程间的通信Queue

Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。

2.1 Queue的使用

可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:

# coding=utf-8
from multiprocessing import Queue

q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1") 
q.put("消息2")
print(q.full())  #False
q.put("消息3")
print(q.full()) #True

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True, 2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

说明
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

  • Queue.qsize():返回当前队列包含的消息数量;
  • Queue.empty():如果队列为空,返回True,反之False ;
  • Queue.full():如果队列满了,返回True,反之False;
  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
    1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
    2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
    -Queue.get_nowait():相当Queue.get(False);
  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;
    1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
    2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
  • Queue.put_nowait(item):相当Queue.put(item, False);
2.2 Queue示例

以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

import os, time, random
from multiprocessing import Process, Queue


# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    # pr进程里是死循环,无法等待其结束,只能强行终止:
    print('')
    print('所有数据都写入并且读完')

3. 进程池 Pool

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

# -*- coding:utf-8 -*-
from multiprocessing import Pool
import os, time, random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po = Pool(3)  # 定义一个进程池,最大进程数3

# 对于数组等可迭代的对象, 可以使用 .map
po.map(worker, list(range(10)))
# 或者 .apply_async
for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

# 官方推荐使用with 上下文管理器  等价于上
with Pool(5) as po:
	# 每个进程间传入参数 不同
    print(po.map(worker, [i for i in range(10)]))
    # 每个进程间传入参数 相同
    print(po.apply_async(worker, (11,))

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close():关闭Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:

# -*- coding:utf-8 -*-

# 修改import中的Queue为Manager
import os, time, random
from multiprocessing import Manager,Pool


def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))

def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "Python":
        q.put(i)

if __name__=="__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

4. 返回值接收

# -*- coding: utf-8 -*-
import os
from multiprocessing import Pool


def func_a(a):
	print(os.getpid())
	return a * 10


def func_b(a, b):
	print(os.getpid())
	return a * b
	

if __name__ == '__main__':
	# 方法一  推荐写法
	with Pool(processes=5) as po:
		# 写法一
		multiple_results = [pool.apply_async(func_a, (i,)) for i in range(4)]
		
		# 写法二
		list_a = [0, 1, 2, 3]
		multiple_results = [pool.map(func_a, list_a)]
		# 或者
		multiple_results = [pool.map_async(func_a, list_a)]
		
        rst = [res.get(timeout=1) for res in multiple_results]
        print(rst)

	# 方法二
	rst = []
	test_list = [(1, 10), (2, 10)]
	with Pool(processes=5) as po:
		for i in test_list:
			res = pool.apply_async(func_b, i)
			rst.append(res.get(timeout=1000))  # 单位毫秒
	print(rst)	

5. 多进程案例 【文件夹复制】

import os
import time
import random
import multiprocessing


def copy_file(queue, file_name,source_folder_name,  dest_folder_name):
    """copy文件到指定的路径"""
    f_read = open(source_folder_name + "/" + file_name, "rb")
    f_write = open(dest_folder_name + "/" + file_name, "wb")
    while True:
        time.sleep(random.random())
        content = f_read.read(1024)
        if content:
            f_write.write(content)
        else:
            break
    f_read.close()
    f_write.close()

    # 发送已经拷贝完毕的文件名字
    queue.put(file_name)


def main():
    # 获取要复制的文件夹
    source_folder_name = input("请输入要复制文件夹名字:")
    dest_folder_name = source_folder_name + "[副本]"

    # 创建目标文件夹
    try:
        os.mkdir(dest_folder_name)
    except:
        pass  # 如果文件夹已经存在,那么创建会失败

    # 获取这个文件夹中所有的普通文件名
    file_names = os.listdir(source_folder_name)
    # 创建Queue
    queue = multiprocessing.Manager().Queue()
    # 创建进程池
    pool = multiprocessing.Pool(3)

    for file_name in file_names:
        # 向进程池中添加任务
        pool.apply_async(copy_file, args=(queue, file_name, source_folder_name, dest_folder_name))

    # 主进程显示进度
    pool.close()

    all_file_num = len(file_names)
    while True:
        file_name = queue.get()
        if file_name in file_names:
            file_names.remove(file_name)

        copy_rate = (all_file_num-len(file_names))*100/all_file_num
        print("\r%.2f...(%s)" % (copy_rate, file_name) + " "*50, end="")
        if copy_rate >= 100:
            break
    print()


if __name__ == "__main__":
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值