multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象
更多内置方法见 官方文档: multiprocessing — 基于进程的并行
1. 进程的创建
1.1 创建 & 获取Pid
import os
import time
from multiprocessing import Process
def run_proc():
"""子进程要执行的代码"""
print('子进程运行中,pid=%d...' % os.getpid()) # os.getpid获取当前进程的进程号
print('子进程将要结束...')
if __name__ == '__main__':
print('父进程pid: %d' % os.getpid()) # os.getpid获取当前进程的进程号
p = Process(target=run_proc)
p.start()
1.2 语法结构
Process([group [, target [, name [, args [, kwargs]]]]])
- target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
- args:给target指定的函数传递的参数,以元组的方式传递
- kwargs:给target指定的函数传递命名参数
- name:给进程设定一个名字,可以不设定
- group:指定进程组,大多数情况下用不到
Process创建的实例对象的常用方法:
- start():启动子进程实例(创建子进程)
- is_alive():判断进程子进程是否还在活着
- join([timeout]):是否等待子进程执行结束,或等待多少秒
- terminate():不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:
- name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
- pid:当前进程的pid(进程号)
1.3 子进程传参
import os
from time import sleep
from multiprocessing import Process
def run_proc(name, age, **kwargs):
for i in range(10):
print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
print(kwargs)
sleep(0.2)
if __name__=='__main__':
p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
p.start()
sleep(1) # 1秒中之后,立即结束子进程
p.terminate()
p.join()
1.4 多进程 不共享 全局变量
import os
import time
from multiprocessing import Process
nums = [11, 22]
def work1():
"""子进程要执行的代码"""
print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
for i in range(3):
nums.append(i)
time.sleep(1)
print("in process1 pid=%d ,nums=%s" % (os.getpid(), nums))
def work2():
"""子进程要执行的代码"""
print("in process2 pid=%d ,nums=%s" % (os.getpid(), nums))
if __name__ == '__main__':
p1 = Process(target=work1)
p1.start()
p1.join()
p2 = Process(target=work2)
p2.start()
2. 进程间的通信Queue
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
2.1 Queue的使用
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
# coding=utf-8
from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1")
q.put("消息2")
print(q.full()) #False
q.put("消息3")
print(q.full()) #True
#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
q.put("消息4",True, 2)
except:
print("消息列队已满,现有消息数量:%s"%q.qsize())
try:
q.put_nowait("消息4")
except:
print("消息列队已满,现有消息数量:%s"%q.qsize())
#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
q.put_nowait("消息4")
#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
for i in range(q.qsize()):
print(q.get_nowait())
说明
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
- Queue.qsize():返回当前队列包含的消息数量;
- Queue.empty():如果队列为空,返回True,反之False ;
- Queue.full():如果队列满了,返回True,反之False;
- Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
-Queue.get_nowait():相当Queue.get(False); - Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常; - Queue.put_nowait(item):相当Queue.put(item, False);
2.2 Queue示例
以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
import os, time, random
from multiprocessing import Process, Queue
# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print('Get %s from queue.' % value)
time.sleep(random.random())
else:
break
if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print('')
print('所有数据都写入并且读完')
3. 进程池 Pool
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:
# -*- coding:utf-8 -*-
from multiprocessing import Pool
import os, time, random
def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d" % (msg,os.getpid()))
# random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))
po = Pool(3) # 定义一个进程池,最大进程数3
# 对于数组等可迭代的对象, 可以使用 .map
po.map(worker, list(range(10)))
# 或者 .apply_async
for i in range(0,10):
# Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
# 每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,))
print("----start----")
po.close() # 关闭进程池,关闭后po不再接收新的请求
po.join() # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
# 官方推荐使用with 上下文管理器 等价于上
with Pool(5) as po:
# 每个进程间传入参数 不同
print(po.map(worker, [i for i in range(10)]))
# 每个进程间传入参数 相同
print(po.apply_async(worker, (11,))
multiprocessing.Pool常用函数解析:
- apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
- close():关闭Pool,使其不再接受新的任务;
- terminate():不管任务是否完成,立即终止;
- join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
# -*- coding:utf-8 -*-
# 修改import中的Queue为Manager
import os, time, random
from multiprocessing import Manager,Pool
def reader(q):
print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in range(q.qsize()):
print("reader从Queue获取到消息:%s" % q.get(True))
def writer(q):
print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
for i in "Python":
q.put(i)
if __name__=="__main__":
print("(%s) start" % os.getpid())
q = Manager().Queue() # 使用Manager中的Queue
po = Pool()
po.apply_async(writer, (q,))
time.sleep(1) # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据
po.apply_async(reader, (q,))
po.close()
po.join()
print("(%s) End" % os.getpid())
4. 返回值接收
# -*- coding: utf-8 -*-
import os
from multiprocessing import Pool
def func_a(a):
print(os.getpid())
return a * 10
def func_b(a, b):
print(os.getpid())
return a * b
if __name__ == '__main__':
# 方法一 推荐写法
with Pool(processes=5) as po:
# 写法一
multiple_results = [pool.apply_async(func_a, (i,)) for i in range(4)]
# 写法二
list_a = [0, 1, 2, 3]
multiple_results = [pool.map(func_a, list_a)]
# 或者
multiple_results = [pool.map_async(func_a, list_a)]
rst = [res.get(timeout=1) for res in multiple_results]
print(rst)
# 方法二
rst = []
test_list = [(1, 10), (2, 10)]
with Pool(processes=5) as po:
for i in test_list:
res = pool.apply_async(func_b, i)
rst.append(res.get(timeout=1000)) # 单位毫秒
print(rst)
5. 多进程案例 【文件夹复制】
import os
import time
import random
import multiprocessing
def copy_file(queue, file_name,source_folder_name, dest_folder_name):
"""copy文件到指定的路径"""
f_read = open(source_folder_name + "/" + file_name, "rb")
f_write = open(dest_folder_name + "/" + file_name, "wb")
while True:
time.sleep(random.random())
content = f_read.read(1024)
if content:
f_write.write(content)
else:
break
f_read.close()
f_write.close()
# 发送已经拷贝完毕的文件名字
queue.put(file_name)
def main():
# 获取要复制的文件夹
source_folder_name = input("请输入要复制文件夹名字:")
dest_folder_name = source_folder_name + "[副本]"
# 创建目标文件夹
try:
os.mkdir(dest_folder_name)
except:
pass # 如果文件夹已经存在,那么创建会失败
# 获取这个文件夹中所有的普通文件名
file_names = os.listdir(source_folder_name)
# 创建Queue
queue = multiprocessing.Manager().Queue()
# 创建进程池
pool = multiprocessing.Pool(3)
for file_name in file_names:
# 向进程池中添加任务
pool.apply_async(copy_file, args=(queue, file_name, source_folder_name, dest_folder_name))
# 主进程显示进度
pool.close()
all_file_num = len(file_names)
while True:
file_name = queue.get()
if file_name in file_names:
file_names.remove(file_name)
copy_rate = (all_file_num-len(file_names))*100/all_file_num
print("\r%.2f...(%s)" % (copy_rate, file_name) + " "*50, end="")
if copy_rate >= 100:
break
print()
if __name__ == "__main__":
main()