金融反欺诈常用特征处理方法

####用户基本属性
phone_number

  • 前缀是否相同

  • 手机号归属地是否相同

  • 是否是虚拟运营商

  • 流量卡还是通话卡
    nickname

  • 昵称符合固定的规律(中文+数字)

  • 备注是否符合某种亲密的称呼
    birthday
    -年纪
    -星座
    -生肖
    sex
    -性别是否失衡
    password
    -是否都相同
    身份证号码
    -年龄 核对
    -性别 核对
    -城市
    邮箱
    -是否是一次性邮箱
    -username 满足规律
    -是否同一邮箱服务商
    -邮箱里面的数据(账单)
    学历
    -相似性
    住房
    -租房情况是否相同
    积分
    -是不是超过某个阈值
    签到
    -相似性
    ip
    -是否是同一个号段
    -每次登录ip地址是否相同
    -是不是临时ip
    -ip和gps是否能对的上
    gps
    -经纬度相似性分析
    -国家 省份 城市 相似性
    -ip和gps是否能对的上
    wifi
    -ssid
    -wifi list
    -贷款前的几分钟有没有切换过wifi
    appllication time
    -时间切片
    -注册用了多长时间(太快太慢都有问题)
    -一共申请了几次
    login time
    -时间切片
    -登录了几次、频率、最后一次登录时间距离贷款时间的间隔
    -同一时间登录做一个校验(同一时间多人登录)
    ua(user agent)
    -每次打开是否是同一个ua
    渠道
    -app/H5/微信
    -渠道ID属于违规渠道
    app version
    -每次app的版本号是否相同
    -app版本会不会太老了(老版本的app有bug,可能会被黑中介来攻击我们)
    推荐人/联系人
    -名字匹配
    -手机号匹配
    ###设备指纹
    imei
    -是否都相同
    -每次登录的imei号是否都相同
    device id
    -是否都相同
    -每次登录的device号是否都相同
    分辨率
    -手机型号和屏幕分辨率是否一致
    mobile type
    -手机品牌
    -手机型号
    os(operating system)
    -每次打开操作系统是否都相同
    -来申请的人是否OS都相同
    -os的版本是否太久
    ###中文错别字可以考虑换成拼音做相似度匹配
    address
    -地址要标准化
    -模糊匹配
    -相似度计算(余弦距离)
    company
    -正则
    -字节拆分
    -关键字提取
    -相似度计算
    -错别字/同音字识别
    ###第三方数据
    人行征信
    -公司信息是否一致
    -学历是否一致
    -居住地址是否一致
    -手机号码是否一致
    -逾期数据
    运营商
    -是否有相同的联系人
    -是否有黑名单客户在通讯录中
    -通话最频繁的几个人(所在地是否和他相同)
    社保公积金
    -工资
    -社保
    -公积金

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值