字符编码

多项式n
f = np.poly1d(np.array([1,2,3,4]).astype(float))
f1 = f.deriv(m=2)#二阶导数
keywords
dtype
ravel#返回数组摊平视图/flatten#真实操作, 申请内存#flat,返回迭代器
reshape/a.shape=(2,5)/resize((2,2))
数组拼接
hstack/vstack/concatnate#调整axis可实现前两步操作
dstack#dstack(x,y)将x摊开为一列,y摊开为一列然后对应位置怼上去♂
column_stack#以列的形式合并/row_stack#以行的形式合并
数组分割
hsplit/#横向相当于按列的形式vsplit#纵向,按行的形式/split(axis)
a.tolist()
数组读写
np.savetxt(path,data)
a,b = p.loadtxt(path,delimiter=‘’#csv文件逗号分隔符,usecols=(6,7)#指定第6和第7个字段,unpack=True#分拆为真,即输出结果可分拆,用两个变量接收)
加权平均
np.average(a,weight=b)
样本方差
np.var()
数组位置
np.where()#返回满足条件的index
np.take(data,index)#按index取数
按位置取最大值
np.maximum(a,b,c)#取a,b,c数组的每个位置最大值组成新数组
卷积
np.convolve#用到再说
修剪、压缩、阶乘
np.clip(1,2)#数组中小于1的全变为1,大于2的全变为2
np.compress(a<2)#类似筛选条件
np.prod()#数组所有元素乘一块
np.cumprod()#返回由每个元素的阶乘构成的数组
np.argmax/np.argmin#返回最大/最小元素索引
np.sign#返回元素正负号
#np.piecewise(a,[a>1,a<1],[1,-1]),分段赋值
np.vectorize()#相当于map
np.hanning(10)#生成10个的高斯分布数组#加权余弦函数#用于过滤数据噪声
np.outer()#结合np.hanning构造高斯矩阵
np.polysub()#多项式做差
np.root()#求根
np.trim_zeros()#去除数组中0
np.select()#根据条件取数
矩阵
a=np.mat(‘1 2 3; 4 5 6; 7 8 9’)矩阵的行与行之间用分号隔开,行内的元素之间用空格隔
开。a.T,a.I
np.bmat#复合矩阵 np.bmat(“A B; A B”)
np.zeros_like(a)#创建一个和a形状相同,并且元素全部为0的数组result
除法区别
np.divide()
np.true_divide
np.floor_divide
np.mat(“0 1 2;1 0 3;4 -3 8”)
#奇异矩阵即行列式等于0的矩阵。方阵即行数与列数一样多的矩阵。
求解特征值和特征向量AX=aX#按照特征向量的基进行变换后方向不变,在各个维度按照特征值的量进行伸缩变换#特征值因而理解为矩阵在特征向量上的信息分量。
np.lin.eig#eigehvalues
svd分解
a,b,c= np.linalg.svd()
b为sigma,是一个数组,可用np.diag转换成sigma矩阵
c#右奇异矩阵,用于数据降维#pca
np.linalg.det()#计算行列式

numpy学习
于 2022-09-30 10:50:32 首次发布
这篇博客详细介绍了NumPy库中的多项式运算、导数计算、数组操作如reshape、concatenate以及矩阵特性,如特征值和奇异值分解。还涵盖了加权平均、样本方差、数组定位和选择等核心概念,是理解和应用NumPy不可或缺的资源。
3842

被折叠的 条评论
为什么被折叠?



