说明一下,这一篇文章的用到的lucene,是用2.0版本的,主要在查询的时候2.0版本的lucene与以前的版本有了一些区别.
其实这一些代码都是早几个月写的,自己很懒,所以到今天才写到自己的博客上,高深的文章自己写不了,只能记录下一些简单的记录与点滴,其中的代码算是自娱自乐的,希望高手不要把重构之类的砸下来...
1、在windows系统下的的C盘,建一个名叫s的文件夹,在该文件夹里面随便建三个txt文件,随便起名啦,就叫"1.txt","2.txt"和"3.txt"啦
其中1.txt的内容如下:
- 中华人民共和国
- 全国人民
- 2006 年
而"2.txt"和"3.txt"的内容也可以随便写几写,这里懒写,就复制一个和1.txt文件的内容一样吧
2、下载lucene包,放在classpath路径中
建立索引:
- package lighter.javaeye.com;
- import java.io.BufferedReader;
- import java.io.File;
- import java.io.FileInputStream;
- import java.io.IOException;
- import java.io.InputStreamReader;
- import java.util.Date;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field;
- import org.apache.lucene.index.IndexWriter;
- /**
- * author lighter date 2006-8-7
- */
- public class TextFileIndexer {
- public static void main(String[] args) throws Exception {
- /* 指明要索引文件夹的位置,这里是C盘的S文件夹下 */
- File fileDir = new File("c://s");
- /* 这里放索引文件的位置 */
- File indexDir = new File("c://index");
- Analyzer luceneAnalyzer = new StandardAnalyzer();
- IndexWriter indexWriter = new IndexWriter(indexDir, luceneAnalyzer,
- true);
- File[] textFiles = fileDir.listFiles();
- long startTime = new Date().getTime();
- //增加document到索引去
- for (int i = 0; i < textFiles.length; i++) {
- if (textFiles[i].isFile()
- && textFiles[i].getName().endsWith(".txt")) {
- System.out.println("File " + textFiles[i].getCanonicalPath()
- + "正在被索引....");
- String temp = FileReaderAll(textFiles[i].getCanonicalPath(),
- "GBK");
- System.out.println(temp);
- Document document = new Document();
- Field FieldPath = new Field("path", textFiles[i].getPath(),
- Field.Store.YES, Field.Index.NO);
- Field FieldBody = new Field("body", temp, Field.Store.YES,
- Field.Index.TOKENIZED,
- Field.TermVector.WITH_POSITIONS_OFFSETS);
- document.add(FieldPath);
- document.add(FieldBody);
- indexWriter.addDocument(document);
- }
- }
- //optimize()方法是对索引进行优化
- indexWriter.optimize();
- indexWriter.close();
- //测试一下索引的时间
- long endTime = new Date().getTime();
- System.out
- .println("这花费了"
- + (endTime - startTime)
- + " 毫秒来把文档增加到索引里面去!"
- + fileDir.getPath());
- }
- public static String FileReaderAll(String FileName, String charset)
- throws IOException {
- BufferedReader reader = new BufferedReader(new InputStreamReader(
- new FileInputStream(FileName), charset));
- String line = new String();
- String temp = new String();
- while ((line = reader.readLine()) != null) {
- temp += line;
- }
- reader.close();
- return temp;
- }
- }
索引的结果:
- File C:/s/1.txt正在被索引....
- 中华人民共和国全国人民2006年
- File C:/s/2.txt正在被索引....
- 中华人民共和国全国人民2006年
- File C:/s/3.txt正在被索引....
- 中华人民共和国全国人民2006年
- 这花费了297 毫秒来把文档增加到索引里面去!c:/s
3、建立了索引之后,查询啦....
- package lighter.javaeye.com;
- import java.io.IOException;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.queryParser.ParseException;
- import org.apache.lucene.queryParser.QueryParser;
- import org.apache.lucene.search.Hits;
- import org.apache.lucene.search.IndexSearcher;
- import org.apache.lucene.search.Query;
- public class TestQuery {
- public static void main(String[] args) throws IOException, ParseException {
- Hits hits = null;
- String queryString = "中华";
- Query query = null;
- IndexSearcher searcher = new IndexSearcher("c://index");
- Analyzer analyzer = new StandardAnalyzer();
- try {
- QueryParser qp = new QueryParser("body", analyzer);
- query = qp.parse(queryString);
- } catch (ParseException e) {
- }
- if (searcher != null) {
- hits = searcher.search(query);
- if (hits.length() > 0) {
- System.out.println("找到:" + hits.length() + " 个结果!");
- }
- }
- }
- }
其运行结果:
具体的API的用法,这里就不说了,具体的做法参考lucene的官方文档吧...
下一篇文章:
搜索篇:lucene的简单实例<二> http://www.javaeye.com/post/190576
打一个例子吧,
这是lucene2.0的API
- QueryParser qp = new QueryParser("body", analyzer);
- query = qp.parse(queryString);
这是lucene1.4.3版的API
- query = QueryParser.parse(key,queryString,new new StandardAnalyzer());
详细的改动看一些官方的文档就清楚啦
文章的时候,感觉比较难写的就是标题,有时候不知道起什么名字好,反正这里写的都是关于lucene的一些简单的实例,就随便起啦.
Lucene 其实很简单的,它最主要就是做两件事:建立索引和进行搜索
来看一些在lucene中使用的术语,这里并不打算作详细的介绍,只是点一下而已----因为这一个世界有一种好东西,叫搜索。
IndexWriter:lucene中最重要的的类之一,它主要是用来将文档加入索引,同时控制索引过程中的一些参数使用。
Analyzer:分析器,主要用于分析搜索引擎遇到的各种文本。常用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。
Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。一般情况将索引放在磁盘上;相应地lucene提供了FSDirectory和RAMDirectory两个类。
Document:文档;Document相当于一个要进行索引的单元,任何可以想要被索引的文件都必须转化为Document对象才能进行索引。
Field:字段。
IndexSearcher:是lucene中最基本的检索工具,所有的检索都会用到IndexSearcher工具;
Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,如有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。
QueryParser: 是一个解析用户输入的工具,可以通过扫描用户输入的字符串,生成Query对象。
Hits:在搜索完成之后,需要把搜索结果返回并显示给用户,只有这样才算是完成搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。
上面作了一大堆名词解释,下面就看几个简单的实例吧:
1、简单的的StandardAnalyzer测试例子
- package lighter.javaeye.com;
- import java.io.IOException;
- import java.io.StringReader;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.Token;
- import org.apache.lucene.analysis.TokenStream;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- public class StandardAnalyzerTest
- {
- //构造函数,
- public StandardAnalyzerTest()
- {
- }
- public static void main(String[] args)
- {
- //生成一个StandardAnalyzer对象
- Analyzer aAnalyzer = new StandardAnalyzer();
- //测试字符串
- StringReader sr = new StringReader("lighter javaeye com is the are on");
- //生成TokenStream对象
- TokenStream ts = aAnalyzer.tokenStream("name", sr);
- try {
- int i=0;
- Token t = ts.next();
- while(t!=null)
- {
- //辅助输出时显示行号
- i++;
- //输出处理后的字符
- System.out.println("第"+i+"行:"+t.termText());
- //取得下一个字符
- t=ts.next();
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- }
显示结果:
第2行:javaeye
第3行:com
提示一下:
StandardAnalyzer是lucene中内置的"标准分析器",可以做如下功能:
1、对原有句子按照空格进行了分词
2、所有的大写字母都可以能转换为小写的字母
3、可以去掉一些没有用处的单词,例如"is","the","are"等单词,也删除了所有的标点
查看一下结果与"new StringReader("lighter javaeye com is the are on")"作一个比较就清楚明了。
这里不对其API进行解释了,具体见lucene的官方文档。需要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的差别。
2、看另一个实例,简单地建立索引,进行搜索
- package lighter.javaeye.com;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.queryParser.QueryParser;
- import org.apache.lucene.search.Hits;
- import org.apache.lucene.search.IndexSearcher;
- import org.apache.lucene.search.Query;
- import org.apache.lucene.store.FSDirectory;
- public class FSDirectoryTest {
- //建立索引的路径
- public static final String path = "c://index2";
- public static void main(String[] args) throws Exception {
- Document doc1 = new Document();
- doc1.add( new Field("name", "lighter javaeye com",Field.Store.YES,Field.Index.TOKENIZED));
- Document doc2 = new Document();
- doc2.add(new Field("name", "lighter blog",Field.Store.YES,Field.Index.TOKENIZED));
- IndexWriter writer = new IndexWriter(FSDirectory.getDirectory(path, true), new StandardAnalyzer(), true);
- writer.setMaxFieldLength(3);
- writer.addDocument(doc1);
- writer.setMaxFieldLength(3);
- writer.addDocument(doc2);
- writer.close();
- IndexSearcher searcher = new IndexSearcher(path);
- Hits hits = null;
- Query query = null;
- QueryParser qp = new QueryParser("name",new StandardAnalyzer());
- query = qp.parse("lighter");
- hits = searcher.search(query);
- System.out.println("查找/"lighter/" 共" + hits.length() + "个结果");
- query = qp.parse("javaeye");
- hits = searcher.search(query);
- System.out.println("查找/"javaeye/" 共" + hits.length() + "个结果");
- }
- }
运行结果:
- 查找"lighter" 共2个结果
- 查找"javaeye" 共1个结果
很久没有看lucene了,这两三天又复习了一下,上一些代码都是前几个月写的,只是改动了一些字符串和包名显示。转载时请说明,文章来自:http://lighter.javaeye.com。
如有什么错误的地方,恳请指出,谢谢。
StringReader sr = new StringReader("lighter javaeye com");
//生成TokenStream对象
TokenStream ts = aAnalyzer.tokenStream("name", sr);
请问:以上的解析是按什么来解析,为什么他会自动的按空格或者","进行字符分割,再一个当SR里输入是中文字符时,他将会对每个字进行分割,请问这是为什么,同时这功能的实现又意为着什么呢.....????
StandardAnalyzer是lucene中内置的"标准分析器",可以做如下功能:
1、对原有句子按照空格进行了分词
2、所有的大写字母都可以能转换为小写的字母
3、可以去掉一些没有用处的单词,例如"is","the","are"等单词,也删除了所有的标点
同时也可以对中文进行分词(效果不好),现在有很多的中文分词包可以采用