计算 1 到 N 之间 有多少个 1

问题描述:

       给定一个十进制整数N,求出从1到N的所有整数中出现”1”的个数。 

      例如:N=2,1,2出现了1个“1”。

            N=12,1,2,3,4,5,6,7,8,9,10,11,12。出现了5个“1”。

问题求解:

解法一:

       最直接的方法就是从1开始遍历到N,将其中每一个数中含有“1”的个数加起来,就得到了问题的解。

      代码如下:

复制代码
 1 publiclong CountOne3(long n)
 2         {
 3 long i =0,j =1;
 4 long count =0;
 5 for (i =0; i <= n; i++)
 6             {
 7                 j = i;
 8 while (j !=0)
 9                 {
10 if (j %10==1)
11                         count++;
12                     j = j /10;
13                 }
14             }
15 return count;
16         }
复制代码

        此方法简单,容易理解,但它的问题是效率,时间复杂度为O(N * lgN),N比较大的时候,需要耗费很长的时间。

 

解法二:

         我们重新分析下这个问题,对于任意一个个位数n,只要n>=1,它就包含一个“1”;n<1,即n=0时,则包含的“1”的个数为0。于是我们考虑用分治的思想将任意一个n位数不断缩小规模分解成许多个个位数,这样求解就很方便。

        但是,我们该如何降低规模?仔细分析,我们会发现,任意一个n位数中“1”的个位可以分解为两个n-1位数中“1”的个数的和加上一个与最高位数相关的常数C。例如,f(12) = f(10 - 1) + f(12 - 10) + 3,其中3是表示最高位为1的数字个数,这里就是10,11,12;f(132)=f(100 -1) + f(132 - 100) + 33,33代表最高位为1的数字的个数,这里就是100~132;f(232) = 2*f(100 - 1) + f(32) + 100,因为232大于199,所以它包括了所有最高位为1的数字即100~199,共100个。

        综上,我们分析得出,最后加的常数C只跟最高位n1是否为1有关,当最高位为1时,常数C为原数字N去掉最高位后剩下的数字+1,当最高位为1时,常数C为10bit,其中bit为N的位数-1,如N=12时,bit=1,N=232时,bit=2。

       于是,我们可以列出递归方程如下:

       if(n1 == 1)

           f(n) = f(10bit-1) + f(n - 10bit)  + n - 10bit+ 1;

       else

           f(n) = n1*f(10bit-1) + f(n – n1*10bit) + 10bit;

       递归的出口条件为:

       if(1<n<10)  return 1;

       else if (n == 0) return 0;

       基于此,编写如下代码:

   

复制代码
 1 publiclong CountOne(long n)
 2         { 
 3 long count =0;
 4 if (n ==0)
 5                 count =0;
 6 elseif (n >1&& n <10)
 7                 count =1;
 8 else
 9             {
10 long highest = n;//表示最高位的数字
11  int bit =0;
12 while (highest >=10)
13                 {
14                     highest = highest /10;
15                     bit++;
16                 }
17 
18 int weight = (int)Math.Pow(10, bit);//代表最高位的权重,即最高位一个1代表的大小
19  if (highest ==1)
20                 {
21                     count = CountOne(weight -1)
22 + CountOne(n - weight)
23 + n - weight +1;
24                 }
25 else
26                 {
27                     count = highest * CountOne(weight -1)
28 + CountOne(n - highest * weight)
29 + weight;
30                 }
31             }
32 return count;
33         }
复制代码

         此算法的优点是不用遍历1~N就可以得到f(N)。经过我测试,此算法的运算速度比解法一快了许多许多,数字在1010内时,算法都可以在毫秒级内结束,而解法一在计算109时,时间超过了5分钟。但此算法有一个显著的缺点就是当数字超过1010时会导致堆栈溢出,无法计算。

        还有就是,我尝试了许久也没有计算出此算法的时间复杂度到底是多少,似乎是O(lg2N),我并不确定,希望知道的高手能给予解答。

 

解法三:

         解法二告诉我们1~ N中“1”的个数跟最高位有关,那我们换个角度思考,给定一个N,我们分析1~N中的数在每一位上出现1的次数的和,看看每一位上“1”出现的个数的和由什么决定。

       1位数的情况:

       在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。

       2位数的情况:

       N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。

       N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。

       由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。

       3位数的情况:

       N=123

       个位出现1的个数为13:1,11,21,…,91,101,111,121

       十位出现1的个数为20:10~19,110~119

       百位出现1的个数为24:100~123

       我们可以继续分析4位数,5位数,推导出下面一般情况: 

       假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。

       如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。

       如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。

        如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。

       综合以上分析,写出如下代码:

 

复制代码
 1 publiclong CountOne2(long n)
 2         {
 3 long count =0;
 4 long i =1;
 5 long current =0,after =0,before =0;
 6 while((n / i) !=0)
 7             {           
 8                 current = (n / i) %10;
 9                 before = n / (i *10);
10                 after = n - (n / i) * i;
11 
12 if (current >1)
13                     count = count + (before +1) * i;
14 elseif (current ==0)
15                     count = count + before * i;
16 elseif(current ==1)
17                     count = count + before * i + after +1;
18 
19                 i = i *10;
20             }
21 return count;
22             
23         }
复制代码

 

     此算法的时间复杂度仅为O(lgN),且没有递归保存现场的消耗和堆栈溢出的问题。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值