二叉搜索树(又称二叉排序树、二叉查找树:Binary Search Tree)的概念:
若其不为空树,当其不为空树,则具是满足以下性质的二叉树:
性质一:若它的左子树不空,则左子树上所有结点的值小于它根节点的值;
性质二:若它的右子树不空,则右子树上所有结点的值大于它根节点的值;
它的左右子树也都为二叉搜索树(及左右子树也满足以上性质);

在对二叉搜索树进行中序遍历后,得到的是升序序列;
(图中二叉搜索树的中序遍历结果为0->1->2->3->4->5->6->7->8->9->10)
二叉搜索树结点对象
public class TreeNode {
public int val;
public TreeNode left, right;
public TreeNode(int val) {
this.val = val;
this.left = this.right = null;
}
}
插入结点
思路:
首先判断是否为空树,是则将插入的结点作为根节点;否则继续根据二叉搜索树的性质进行结点插入的操作;
根据二叉搜索树的性质一(若它的左子树不空,则左子树上所有结点的值小于它根节点的值)、性质二(若它的右子树不空,则右子树上所有结点的值大于它根节点的值)将要插入的结点的值与当前结点的值进行比较,若小于当前结点的值则说明所要插入的结点在当前结点的左子树中,否则在当前结点的右子树中。
若要插入的结点的值<当前结点的值,则判断当前结点的左子树是否为空(即判断当前结点的左孩子是否为空)。若为空则将要插入的结点最为当前结点的左孩子(即为当前节点左子树的根结点);否则将当前结点的左孩子设置为新的当前结点(即将当前结点左子树的根节点作为新的当前结点),返回步骤二,在左子树中继续寻找插入的位置。
若要插入的结点的值 ≥ 当前结点的值,则判断当前结点的右子树是否为空(即判断当前结点的右孩子是否为空)。若为空则将要插入的结点最为当前结点的右孩子(即为当前节点右子树的根结点);否则将当前结点的右孩子设置为新的当前结点(即将当前结点右子树的根节点作为新的当前结点),返回步骤二,在右子树中继续寻找插入的位置。
public TreeNode insertNode(TreeNode root, TreeNode node) {
TreeNode Pointer;
Pointer = root;
if(Pointer == null){
return node;
}
while(Pointer != null) {
if(node.val < Pointer.val){
if(Pointer.left == null){
Pointer.left = node;
break;
}else{
Pointer = Pointer.left;
}
}else{
if(Pointer.right == null){
Pointer.right = node;
break;
}else {
Pointer = Pointer.right;
}
}
}
return root;
}