二叉搜索树插入节点方法

二叉搜索树(又称二叉排序树、二叉查找树:Binary Search Tree)的概念:

若其不为空树,当其不为空树,则具是满足以下性质的二叉树:

性质一:若它的左子树不空,则左子树上所有结点的值小于它根节点的值;

性质二:若它的右子树不空,则右子树上所有结点的值大于它根节点的值;

它的左右子树也都为二叉搜索树(及左右子树也满足以上性质);

在对二叉搜索树进行中序遍历后,得到的是升序序列;

(图中二叉搜索树的中序遍历结果为0->1->2->3->4->5->6->7->8->9->10)

二叉搜索树结点对象

 public class TreeNode {
      public int val;
      public TreeNode left, right;
      public TreeNode(int val) {
          this.val = val;
          this.left = this.right = null;
      }
  }

插入结点

思路:

  1. 首先判断是否为空树,是则将插入的结点作为根节点;否则继续根据二叉搜索树的性质进行结点插入的操作;

  1. 根据二叉搜索树的性质一(若它的左子树不空,则左子树上所有结点的值小于它根节点的值)、性质二(若它的右子树不空,则右子树上所有结点的值大于它根节点的值)将要插入的结点的值与当前结点的值进行比较,若小于当前结点的值则说明所要插入的结点在当前结点的左子树中,否则在当前结点的右子树中。

  1. 若要插入的结点的值<当前结点的值,则判断当前结点的左子树是否为空(即判断当前结点的左孩子是否为空)。若为空则将要插入的结点最为当前结点的左孩子(即为当前节点左子树的根结点);否则将当前结点的左孩子设置为新的当前结点(即将当前结点左子树的根节点作为新的当前结点),返回步骤二,在左子树中继续寻找插入的位置。

  1. 若要插入的结点的值 ≥ 当前结点的值,则判断当前结点的右子树是否为空(即判断当前结点的右孩子是否为空)。若为空则将要插入的结点最为当前结点的右孩子(即为当前节点右子树的根结点);否则将当前结点的右孩子设置为新的当前结点(即将当前结点右子树的根节点作为新的当前结点),返回步骤二,在右子树中继续寻找插入的位置。

public TreeNode insertNode(TreeNode root, TreeNode node) {
        TreeNode Pointer;
        Pointer = root;
        if(Pointer == null){
            return node;
        }
        while(Pointer != null) {
            if(node.val < Pointer.val){
                if(Pointer.left == null){
                    Pointer.left = node;
                    break;
                }else{
                    Pointer = Pointer.left;
                }
            }else{
                if(Pointer.right == null){
                    Pointer.right = node;
                    break;
                }else {
                    Pointer = Pointer.right;
                }
            }
        }
        return root;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值