杜教筛

狄利克雷卷积与一些积性函数

积性函数: e ( x ) = [ x = = 1 ] e(x)=[x==1] e(x)=[x==1]
I ( x ) = 1 I(x)=1 I(x)=1
i d ( x ) = x id(x)=x id(x)=x
φ ( x ) = ∑ i = 1 x [ g c d ( i , x ) = = 1 ] \varphi(x)=\sum_{i=1}^{x}[gcd(i,x)==1] φ(x)=i=1x[gcd(i,x)==1]
μ ( x ) ( 定 义 迷 模 ) \mu(x)(定义迷模) μ(x)()
σ ( x ) = ∑ d ∣ x d \sigma(x)=\sum_{d|x}d σ(x)=dxd
d ( x ) = ∑ d = 1 x [ d ∣ x ] d(x)=\sum_{d=1}^{x}[d|x] d(x)=d=1x[dx]

狄利克雷卷积是对两个函数进行的运算(这里记为*):
( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) × g ( n d ) (f*g)(n)=\sum_{d|n}f(d)\times g(\frac{n}{d}) (fg)(n)=dnf(d)×g(dn)
然后我们发现狄利克雷卷积有如下几个运算法则:
单 位 1 ( e ) : f ∗ e = f ( f 为 任 意 积 性 函 数 ) 单位1(e):f*e=f(f为任意积性函数) 1(e)fe=f(f)
交 换 律 : f ∗ g = g ∗ f 交换律:f*g=g*f fg=gf
结 合 律 : f ∗ ( g ∗ h ) = ( f ∗ g ) ∗ h 结合律:f*(g*h)=(f*g)*h f(gh)=(fg)h
I ∗ μ = e I*\mu=e Iμ=e
I ∗ φ = i d I*\varphi=id Iφ=id

推式子

重复,杜教筛筛的是积性函数的前缀和。

所以我们的式子从 a n s ( n ) = ∑ i = 1 n f ( i ) ans(n)=\sum_{i=1}^nf(i) ans(n)=i=1nf(i)开始

我们设 f ∗ g = h f*g=h fg=h

那么:
∑ i = 1 n h ( i ) = ∑ i = 1 n ∑ d ∣ i f ( d ) × g ( i d ) \sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}f(d)\times g(\frac{i}{d}) i=1nh(i)=i=1ndif(d)×g(di)

= ∑ d = 1 n g ( d ) ∑ i = 1 ⌊ n d ⌋ f ( i ) =\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i) =d=1ng(d)i=1dnf(i)

= ∑ d = 1 n g ( d ) a n s ( ⌊ n d ⌋ ) =\sum_{d=1}^{n}g(d)ans(\lfloor\frac{n}{d}\rfloor) =d=1ng(d)ans(dn)

d = 1 d=1 d=1的项分出来: ∑ i = 1 n h ( i ) = g ( 1 ) a n s ( n ) + ∑ d = 2 n g ( d ) a n s ( ⌊ n d ⌋ ) \sum_{i=1}^{n}h(i)=g(1)ans(n)+\sum_{d=2}^{n}g(d)ans(\lfloor\frac{n}{d}\rfloor) i=1nh(i)=g(1)ans(n)+d=2ng(d)ans(dn)

移项: g ( 1 ) a n s ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) a n s ( ⌊ n d ⌋ ) g(1)ans(n)=\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)ans(\lfloor\frac{n}{d}\rfloor) g(1)ans(n)=i=1nh(i)d=2ng(d)ans(dn)
a n s ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) a n s ( ⌊ n d ⌋ ) g ( 1 ) ans(n)=\frac{\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)ans(\lfloor\frac{n}{d}\rfloor)}{g(1)} ans(n)=g(1)i=1nh(i)d=2ng(d)ans(dn)

这个时候如果我们能快速计算出 ∑ i = 1 n h ( i ) \sum_{i=1}^{n}h(i) i=1nh(i) g ( d ) g(d) g(d),那么就可以递归得到 a n s ans ans了。

那么对于 f = μ f=\mu f=μ f = φ f=\varphi f=φ g = I g=I g=I,那么 h = e 或 i d h=e或 id h=eid ∑ i = 1 n h ( i ) = 1 或 n ( n + 1 ) / 2 \sum_{i=1}^{n}h(i)=1或n(n+1)/2 i=1nh(i)=1n(n+1)/2,我们就可以快快乐乐的杜教筛了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值