DP优化:矩阵乘法

这篇博客介绍了如何使用矩阵乘法来优化动态规划(DP)问题,适用于转移式只有加法和常量系数的情况。博主通过斐波那契数列举例,说明矩阵乘法可以将O(n)的朴素算法优化为O(logn),并提供了多个例题,包括数学作业、恐怖的奴隶主、表达式求值等问题,展示了矩阵乘法在不同场景的应用。
摘要由CSDN通过智能技术生成

话说这是博主的第一篇博客。。。

咳咳咳,今天讲的是DP的一种优化策略——矩阵乘法

关于能用矩阵乘法优化的DP题目,有如下几个要求:

  1. 转移式只有加法,清零,减法etc.,max和min运算不允许
  2. 转移式中关于前几位dp结果得到的系数必须是常量
  3. 转移次数一般超级多
  4. 由于转移次数多,一般都要模一个int范围内的数

综上,举一个例子:

d p [ i ] = a × d p [ i − 1 ] + b × d p [ i − 2 ] + c × d p [ i − 3 ] dp[ i ]=a×dp[ i-1 ]+b×dp[ i-2]+c×dp[ i-3 ] dp[i]=a×dp[i1]+b×dp[i2]+c×dp[i3]

其中,a,b,c是常量,而在需要矩阵优化的DP中,往往 i 在2^128之类的,特别鬼畜的特别大的数;
因为矩阵乘法优化后求dp[ i ] 是在O log(i)的时间内完成的。
那么,关于矩阵乘法如何实现,它的原理又是啥呢?
矩阵乘法需要两个矩阵A与B,A是n×p,B是p×m的大小,如下图此图取自百度百科
为了方便解释,我们举斐波那契的例子。
斐波那契的转移式是:dp[ i ]=dp[ i-1 ]+dp[ i-2 ]。
那么我们把(dp[ i ],dp[ i-1 ])看做一个1×2的矩阵A
而每次转移相当于把A乘以矩阵F:
|1 1|
|1 0|
得出的结果是: ( d p [ i ] + d p [ i − 1 ] , d p [ i ] ) (dp[ i ]+dp[ i-1],dp[ i ]) dp[i]+dp[i1]dp[i],也就是 ( d p [ i + 1 ] ,

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值