数学基础
平凡的兵
AI的实践者
展开
-
线性变换之特征值与特征向量
1. 线性变换可以用以下公式表示:T(x) = Ax2. 矩阵A的特征值与特征向量Ax = (lambda)x原创 2013-03-19 20:37:25 · 2321 阅读 · 0 评论 -
方差,协方差,协方差矩阵
X,Y均为一维向量,或者说一维随机变量。X = (X1, X2, ..., Xn)Y = (Y1, Y2, ..., Yn)方差协方差方差的概念好理解:随机变量X偏离均值的度量。协方差如何理解?它的值表示着什么? 它是两个随机变量关系的度量。值的正负比值的大小更有意义, 值为正,说明两个随机变量的变化方向一致, 值为负,原创 2013-03-20 18:47:30 · 1143 阅读 · 0 评论 -
PCA, ICA, CCA
1. PCA 主成分分析m个n维的样本数据X1, X2, ... , Xm, 均值为u步骤:(1)标准化, Xi - u(2)计算协方差矩阵(3)计算特征值和特征向量(单位化)(4)选择特征值最大的前k(1(5)利用特征向量的组合进行线性变换,得到新的数据2. ICA 独立成分分析从可观察的Observables信号X1, X2, ..., Xn, 恢复原创 2013-03-21 10:48:12 · 3264 阅读 · 0 评论 -
各种距离
转自http://www.cnblogs.com/heaad/archive/2011/03/08/1977733.html在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量转载 2015-03-24 20:17:07 · 519 阅读 · 0 评论