PCA, ICA, CCA

1. PCA 主成分分析

m个n维的样本数据X1, X2, ... , Xm, 均值为u

步骤:

(1)标准化, Xi - u

(2)计算协方差矩阵 E{ (X-E(X))(X-E(X))^T }

(3)计算特征值和特征向量(单位化)

(4)选择特征值最大的前k(1<=k<=n)项的特征向量

(5)利用特征向量的组合进行线性变换,得到新的数据

2. ICA 独立成分分析


从可观察的Observables信号X1, X2, ..., Xn, 恢复Sources信号S1, S2, ..., Sm

x = Ws

s = W^(-1)x  

这里涉及到线性变换。

以去脑电伪迹(可以理解为噪声信号)为例。


这里有三步:

(1)观察信号X经过线性变换计算出源信号u,也就是独立成分ICs:u = WX

(2)去除伪迹的成分,在脑电信号中,一般是第一第二个成分

(3)对去除伪迹后的成分u0进行线性变换,x0 = W^(-1)u0, x0就是去除伪迹后的信号


这里关键的关键就是如何计算出W,这里依据成分的独立性这一性质。


3. CCA 典型相关分析


参考资料:

1. A tutorial on Principal Components Analysis ,Lindsay I Smith, 2002

2. Independent Component Analysis: Algorithms and Applications,Aapo Hyvärinen and Erkki Oja,2000

3. Artifact rejection and running ICA

4. Independent Component Analysis and Its Applications,Tzyy-Ping Jung 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值