1. PCA 主成分分析
m个n维的样本数据X1, X2, ... , Xm, 均值为u
步骤:
(1)标准化, Xi - u
(2)计算协方差矩阵 E{ (X-E(X))(X-E(X))^T }
(3)计算特征值和特征向量(单位化)
(4)选择特征值最大的前k(1<=k<=n)项的特征向量
(5)利用特征向量的组合进行线性变换,得到新的数据
2. ICA 独立成分分析
从可观察的Observables信号X1, X2, ..., Xn, 恢复Sources信号S1, S2, ..., Sm
x = Ws
s = W^(-1)x
这里涉及到线性变换。
以去脑电伪迹(可以理解为噪声信号)为例。
这里有三步:
(1)观察信号X经过线性变换计算出源信号u,也就是独立成分ICs:u = WX
(2)去除伪迹的成分,在脑电信号中,一般是第一第二个成分
(3)对去除伪迹后的成分u0进行线性变换,x0 = W^(-1)u0, x0就是去除伪迹后的信号
这里关键的关键就是如何计算出W,这里依据成分的独立性这一性质。
3. CCA 典型相关分析
参考资料:
1. A tutorial on Principal Components Analysis ,Lindsay I Smith, 2002
2. Independent Component Analysis: Algorithms and Applications,Aapo Hyvärinen and Erkki Oja,2000
3. Artifact rejection and running ICA
4. Independent Component Analysis and Its Applications,Tzyy-Ping Jung