昇思25天学习打卡营第19天|ResNet50 图像分类案例:数据集、训练与预测可视化

目录

环境配置

数据集加载

数据集可视化

Building Block

Bottleneck

构建ResNet50网络

模型训练与评估

可视化模型预测


环境配置


        首先指出实验环境预装的 mindspore 版本以及更换版本的方法。然后,它卸载了已安装的 mindspore 并重新安装指定的 2.3.0rc1 版本,并查看了当前安装的 mindspore 版本。接着,通过自定义的 download 函数从给定的 url 下载一个压缩文件(cifar-10-binary.tar.gz)到指定的本地路径(./datasets-cifar10-bin),同时设置了覆盖已存在文件的选项。

        代码如下:

%%capture captured_output
# 实验环境已经预装了mindspore==2.3.0rc1,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
# 查看当前 mindspore 版本
!pip show mindspore
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"

download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)

数据集加载


        首先,定义了一些常量,如数据集根目录、批量大小、图像大小、并行线程个数和分类数量。

        然后,定义了一个名为 create_dataset_cifar10 的函数,用于根据指定的参数创建 Cifar10Dataset 。在函数内部,根据数据的使用类型(训练或测试)添加不同的数据增强操作,如随机裁剪、水平翻转、调整大小、缩放、归一化等,并对标签进行类型转换。然后进行数据映射和批量处理操作。

        最后,使用上述函数分别创建了训练数据集 dataset_train 和测试数据集 dataset_val ,并获取了它们各自的批量数量。

        代码如下:

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstype

data_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 64  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 1  # 并行线程个数
num_classes = 10  # 分类数量


def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):

    data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,
                                 usage=usage,
                                 num_samples=10000,
                                 num_parallel_workers=workers,
                                 shuffle=True)

    trans = []
    if usage == "train":
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]

    trans += [
        vision.Resize(resize),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]

    target_trans = transforms.TypeCast(mstype.int32)

    # 数据映射操作
    data_set = data_set.map(operations=trans,
                            input_columns='image',
                            num_parallel_workers=workers)

    data_set = data_set.map(operations=target_trans,
                            input_columns='label',
                            num_parallel_workers=workers)

    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


# 获取处理后的训练与测试数据集

dataset_train = create_dataset_cifar10(dataset_dir=data_dir,
                                       usage="train",
                                       resize=image_size,
                                       batch_size=batch_size,
                                       workers=workers)
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_cifar10(dataset_dir=data_dir,
                                     usage="test",
                                     resize=image_size,
                                     batch_size=batch_size,
                                     workers=workers)
step_size_val = dataset_val.get_dataset_size()

数据集可视化


        首先,从训练数据集 dataset_train 中获取一个批次的数据,并将其中的图像数据 images 和标签数据 labels 转换为 numpy 数组,并打印出它们的形状和前 6 个标签。

        然后,读取一个文件获取类别名称,并存储在 classes 列表中。

        最后,使用 matplotlib.pyplot 绘制训练数据集中的前 6 张图片。对每张图片进行了数据处理,包括转置维度、反标准化等操作,并为每个子图添加了对应的类别名称标题,同时关闭了坐标轴显示,最后展示了绘制的图像。

        代码如下:

import matplotlib.pyplot as plt
import numpy as np

data_iter = next(dataset_train.create_dict_iterator())

images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")

# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")

classes = []

with open(data_dir + "/batches.meta.txt", "r") as f:
    for line in f:
        line = line.rstrip()
        if line:
            classes.append(line)

# 训练数据集的前六张图片
plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    image_trans = np.transpose(images[i], (1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    image_trans = std * image_trans + mean
    image_trans = np.clip(image_trans, 0, 1)
    plt.title(f"{classes[labels[i]]}")
    plt.imshow(image_trans)
    plt.axis("off")
plt.show()

        运行结果:

Building Block


        定义了一个名为 ResidualBlockBase 的类,它继承自 mindspore.nn.Cell 。

        首先,定义了类属性 expansion ,其值为 1 ,表示最后一个卷积核数量与第一个卷积核数量相等。

        在 __init__ 方法中,初始化了一些属性:

        如果没有传入 norm 参数,就创建一个 nn.BatchNorm2d 对象作为 norm ;否则使用传入的 norm 。

        定义了两个卷积层 conv1 和 conv2 ,并使用指定的初始化方式 weight_init 。

        定义了 ReLU 激活函数和 down_sample 。

        construct 方法定义了前向传播的计算过程:

        定义 identity 为输入 x ,作为 shortcuts 分支。

        经过主分支的卷积、归一化、激活等操作。

        如果 down_sample 存在,对输入进行处理得到新的 identity 。

        将主分支结果与 shortcuts 分支结果相加,再经过 ReLU 激活函数得到最终输出。

        代码如下:

from typing import Type, Union, List, Optional
import mindspore.nn as nn
from mindspore.common.initializer import Normal

# 初始化卷积层与BatchNorm的参数
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支

        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out

Bottleneck


        定义了一个名为 ResidualBlock 的类,它也是继承自 mindspore.nn.Cell 。

        类属性 expansion 被设置为 4 ,表示最后一个卷积核的数量是第一个卷积核数量的 4 倍。

        在 __init__ 方法中:

        定义了三个卷积层 conv1 、 conv2 、 conv3 ,以及对应的三个 BatchNorm2d 层 norm1 、 norm2 、 norm3 ,并设置了权重初始化方式。

        定义了 ReLU 激活函数和 down_sample 。

        construct 方法定义了前向传播过程:

        定义 identity 为输入 x 作为 shortcuts 分支。

        主分支依次经过三层卷积、对应的归一化和激活操作。

        如果 down_sample 存在,对输入进行处理得到新的 identity 。

        将主分支结果与 shortcuts 分支结果相加,再经过 ReLU 激活函数得到最终输出。

        代码如下:

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):

        identity = x  # shortscuts分支

        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)

        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out

构建ResNet50网络


        make_layer 函数用于创建包含指定数量残差块的层。根据条件决定是否需要 down_sample 操作,并依次添加残差块到层中。

        ResNet 类定义了一个残差网络模型。在初始化方法中定义了一系列的卷积层、池化层、残差网络层、平均池化层、全连接层等。construct 方法定义了数据在模型中的前向传播过程。

        _resnet 函数根据给定的参数创建 ResNet 模型,并根据 pretrained 参数决定是否加载预训练模型的参数。

        resnet50 函数具体创建了一个 ResNet50 模型,并指定了预训练模型的 URL 和本地保存路径,以及是否使用预训练模型。

        代码如下:

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支

    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)
from mindspore import load_checkpoint, load_param_into_net


class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()

        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)

    def construct(self, x):

        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)

        return x
def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrained_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)

    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrained_ckpt, replace=True)
        param_dict = load_checkpoint(pretrained_ckpt)
        load_param_into_net(model, param_dict)

    return model


def resnet50(num_classes: int = 1000, pretrained: bool = False):
    """ResNet50模型"""
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

模型训练与评估


        实现了使用预训练的 ResNet50 模型进行微调训练,并在训练过程中进行验证和保存最优模型。

        首先,定义了 ResNet50 网络,并重置了全连接层,设置了学习率、优化器和损失函数。然后创建了训练集和验证集的迭代器,并设置了最佳模型的存储路径。

        定义了 train 函数用于模型的训练,在每个训练批次中计算损失并打印部分批次的损失信息,返回平均损失。evaluate 函数用于模型的验证,计算准确率。

        在训练循环中,对每个 epoch 进行训练和验证,打印当前 epoch 的平均损失和准确率。如果当前准确率高于之前的最优准确率,就保存当前模型为最优模型。

        最后,打印出验证结束后的最优准确率和保存最优模型的路径。

        代码如下:

# 定义ResNet50网络
network = resnet50(pretrained=True)

# 全连接层输入层的大小
in_channel = network.fc.in_channels
fc = nn.Dense(in_channels=in_channel, out_channels=10)
# 重置全连接层
network.fc = fc
# 设置学习率
num_epochs = 1
lr = nn.cosine_decay_lr(min_lr=0.00001, max_lr=0.001, total_step=step_size_train * num_epochs,
                        step_per_epoch=step_size_train, decay_epoch=num_epochs)
# 定义优化器和损失函数
opt = nn.Momentum(params=network.trainable_params(), learning_rate=lr, momentum=0.9)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


def forward_fn(inputs, targets):
    logits = network(inputs)
    loss = loss_fn(logits, targets)
    return loss


grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)


def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss
import os

# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)

# 最佳模型存储路径
best_acc = 0
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best.ckpt"

if not os.path.exists(best_ckpt_dir):
    os.mkdir(best_ckpt_dir)
import mindspore.ops as ops


def train(data_loader, epoch):
    """模型训练"""
    losses = []
    network.set_train(True)

    for i, (images, labels) in enumerate(data_loader):
        loss = train_step(images, labels)
        if i % 100 == 0 or i == step_size_train - 1:
            print('Epoch: [%3d/%3d], Steps: [%3d/%3d], Train Loss: [%5.3f]' %
                  (epoch + 1, num_epochs, i + 1, step_size_train, loss))
        losses.append(loss)

    return sum(losses) / len(losses)


def evaluate(data_loader):
    """模型验证"""
    network.set_train(False)

    correct_num = 0.0  # 预测正确个数
    total_num = 0.0  # 预测总数

    for images, labels in data_loader:
        logits = network(images)
        pred = logits.argmax(axis=1)  # 预测结果
        correct = ops.equal(pred, labels).reshape((-1, ))
        correct_num += correct.sum().asnumpy()
        total_num += correct.shape[0]

    acc = correct_num / total_num  # 准确率

    return acc
# 开始循环训练
print("Start Training Loop ...")

for epoch in range(num_epochs):
    curr_loss = train(data_loader_train, epoch)
    curr_acc = evaluate(data_loader_val)

    print("-" * 50)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, curr_loss, curr_acc
    ))
    print("-" * 50)

    # 保存当前预测准确率最高的模型
    if curr_acc > best_acc:
        best_acc = curr_acc
        ms.save_checkpoint(network, best_ckpt_path)

print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

        运行结果:

可视化模型预测


        定义了一个名为 visualize_model 的函数,用于可视化模型在验证集上的预测结果。

        函数首先创建了一个 ResNet50 模型用于对狼和狗图像进行二分类,然后加载最优模型的参数。接着从验证集中获取一批数据,包括图像和标签,并使用模型对这批图像进行预测。通过读取文件获取类别名称,然后绘制图像进行展示。对于每幅图像,如果预测正确,标题显示为蓝色;如果预测错误,标题显示为红色。同时展示了经过处理后的图像,并关闭了坐标轴。最后,调用 visualize_model 函数并传入最优检查点路径和验证集来执行可视化操作。

        代码如下:

import matplotlib.pyplot as plt


def visualize_model(best_ckpt_path, dataset_val):
    num_class = 10  # 对狼和狗图像进行二分类
    net = resnet50(num_class)
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    # 加载验证集的数据进行验证
    data = next(dataset_val.create_dict_iterator())
    images = data["image"]
    labels = data["label"]
    # 预测图像类别
    output = net(data['image'])
    pred = np.argmax(output.asnumpy(), axis=1)

    # 图像分类
    classes = []

    with open(data_dir + "/batches.meta.txt", "r") as f:
        for line in f:
            line = line.rstrip()
            if line:
                classes.append(line)

    # 显示图像及图像的预测值
    plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'
        plt.title('predict:{}'.format(classes[pred[i]]), color=color)
        picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))
        mean = np.array([0.4914, 0.4822, 0.4465])
        std = np.array([0.2023, 0.1994, 0.2010])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()


# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)

        运行结果:

        打印时间:

  • 6
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值