Python 潮流周刊第二季(31~60)-纯链接版

△△请给“Python猫”加星标 ,以免错过文章推送

你好,我是豌豆花下猫。

Python 潮流周刊第 2 季(31-60期)在 2024.07.16 已完结,第 3 季(61-90期)在 2025.02.23 已完结。

在周刊即将更新到第 100 期之际,我将第 2 季内容整理成一份简化版,分享给大家。

本文总计约 800 个链接,有 5 大分类,你可以快速浏览文章、项目、播客、视频和话题讨论的标题,快速找到自己感兴趣的内容进行查看。

Python 周刊的精美电子书 EPUB、PDF 及 Markdown 版本,请在公zh号“Python猫”里发送“W30”,获取免费下载链接

提醒:近期续订或新订阅,领券可享受八折优惠,欢迎领取优惠券 --> https://www.xiaobot.net/coupon/d2c69b05-91b8-4e2b-b346-e7bc4dbc141a

🦄文章&教程

1、PEP-738:将 Android 添加为第 3 层支持的平台[1]

2、深度解析 Marker:AI 驱动的 PDF 布局检测引擎的源码解读[2]

3、现实世界的 match/case[3]

4、pytest 守护进程:提升 10 倍本地测试迭代速度[4]

5、使用 Python 88 行代码写一个简易的 Android AI 程序[5]

6、在 Python 中不需要这些无谓的操作[6]

7、为什么要用“if TYPE_CHECKING”?[7]

8、对比 SQLALchemy 与 Django ORM[8]

9、Python __init__.py 的最佳实践[9]

10、Mojo:来自一位 Python 研究员的观点[10]

11、Python 中的简单 HTTP 状态码[11]

12、CPython 开发实战:实现 None 感知运算符 ?. 和 ??[12]

13、代码的运行多于被阅读[13]

14、在并行程序中实际最多能用多少个 CPU?[14]

15、你的 Python 包都装到哪了?[15]

16、移除 CPython 中的私有 C API 函数[16]

17、Python 小陷阱:复制列表时的问题[17]

18、取消 Asyncio 任务的最佳实践[18]

19、Python 项目中的配置:没有魔法,只是必要的实践[19]

20、优化 Python 的 Flask、Django 和 FastAPI 程序[20]

21、为什么 Python、Go 和 Rust 都不支持三元运算符?[21]

22、Python 中的“key”参数的关键[22]

23、从 Python 数据类中消除状态突变方法[23]

24、Flask 已死,FastAPI 是未来[24]

25、Python + Flask 打造属于自己的 RSS 安全信息流[25]

26、Microdot:又一个 Python Web 框架[26]

27、周末 AI 项目:在 2004 年的诺基亚 9500 上运行 7B 大型语言模型[27]

28、Python Asyncio 之常见的三个坑[28]

29、Bash、Lua、Python 和 Rust 的梦幻岛冒险[29]

30、YAML、Python 和 Holy Graal[30]

31、“Python -m”:最酷的 Python 标记,真的值得更多关注[31]

32、Python CI 的初学者指南[32]

33、Python Type Hints 简明教程(基于 Python 3.12)[33]

34、Pyinstaller EXE 被检测为病毒?解决方案和替代方案[34]

35、Fontimize 简介|精确字体子集,仅使用你网站的字符[35]

36、GH-113464:copy-and-patch 的 JIT 编译器[36]

37、消失的隐喻:Zip 和 Paste[37]

38、40 亿个 IF 语句[38]

39、简单聊聊 Python 3.13 的 JIT 方案[39]

40、在 Python 中读取 Excel 的最快方法[40]

41、Flask 教程:从头开始构建可扩展的 Web 项目[41]

42、Python、C、汇编 - 提高 2500 倍余弦相似度运算[42]

43、使用 AI 检测 AI 生成的照片[43]

44、Python 内置函数 max 有毛病[44]

45、App 自动化测试之 Appium 应用篇| Appium 常用 API 及操作[45]

46、使用 Django 构建一个实时消息应用[46]

47、了解 Python 中的数值数据类型[47]

48、非阻塞的 Asyncio 日志记录[48]

49、Instagram 如何仅凭 3 名工程师实现用户规模 1400 万[49]

50、Google 设计的类 Python 编程语言 Starlark[50]

51、数据工程的历史和现状[51]

52、Python 3.13 也有了 JIT 编译器[52]

53、NumPy 2 即将推出:防止破坏,更新你的代码[53]

54、Python 反直觉地在科学计算中兴起[54]

55、在 Pandas 中实现快速高效的不等价连接[55]

56、Pandas Profiling:详细介绍它的使用[56]

57、深入了解 Python 的 functools.wraps 装饰器[57]

58、纯 Python 实现的 SIMD[58]

59、保护 Flask 程序的最佳实践[59]

60、使用服务器发送事件 (SSE) 将实时更新推送到客户端[60]

61、开发用 AI 驱动的 TODO 应用[61]

62、PEP-736 调用时关键字参数的简写语法[62]

63、如何用 Python 删除图像中的背景?[63]

64、一年后的 Python 打包:回顾 2023 年 Python 的打包[64]

65、PyCon 2023(美国和澳大利亚)所有演讲视频[65]

66、Python 的 Synchronized[66]

67、更快的 Python C 扩展的类型信息[67]

68、通过示例比较 Kotlin 和 Python 中的协程[68]

69、Pydantic 处理 1970 年代时间的奇特问题[69]

70、浏览器上的代码游乐场[70]

71、SQLite 的“database is locked”错误[71]

72、数据处理神器可不止 Pandas 哦,还有 Polars,全方位解析 Polars[72]

73、用 Python 函数构建 HTML 组件[73]

74、500 行 SQL 实现一个 GPT[74]

75、Python 装饰器的 3 个真实案例[75]

76、这不是面试建议:Python 不用堆和树实现按优先级过期的 LRU 缓存[76]

77、[Python dict() 和 {} 的性能分析](https://madebyme.today/blog/python-dict-vs-curly-brackets/ "Python dict( "Python dict() 和 {} 的性能分析") 和 {} 的性能分析")

78、增强 Markdown 语言以实现出色的 Python 图形界面[77]

79、7 个 Python 内存优化技巧[78]

80、Python 中的垃圾回收:你需要知道的事情[79]

81、Postgres 与 DynamoDB:该选择哪个数据库?[80]

82、使用 Streamlit 在 Python 中创建仪表板[81]

83、scrapscript.py 编程语言的实现过程[82]

84、Python Cryptography 已支持 X.509[83]

85、我对动态类型感到失望[84]

86、Python “令人失望”的超能力[85]

87、使用 Django、Django REST 和 Next.js 构建全栈项目[86]

88、使用 SQL、Node.js、Django 和 Next.js 构建仪表板项目[87]

89、用 Profila 分析你的 Numba 代码[88]

90、Python datetime 标准库的 10 个陷阱[89]

91、使用 Python 纠正语法的 4 种方法[90]

92、Python 调试技巧[91]

93、调试 Python 与 C 语言混合的项目[92]

94、分析“使用 Python 和 2MB RAM 对一百万个 32 位整数进行排序”[93]

95、使用 Python + Pylasu 实现语言解析器[94]

96、动态规划不是黑魔法[95]

97、什么时候应避免静态类型检查?[96]

98、实用指南:用 Python 运行开源的 LLM[97]

99、uv:Rust 开发的 Python 打包工具[98]

100、Rye:愿景延续[99]

101、为什么越来越多用 Rust 开发的库?[100]

102、80 行 Python 实现一个搜索引擎[101]

103、如何计算 Python 中的 CPU 指令数?[102]

104、Python 复用装饰器代码[103]

105、像专业人士一样处理 Asyncio 任务[104]

106、使用 textwrap 模块操作字符串[105]

107、总结 Python 版本间的主要变更点[106]

108、将 Postgres 作为队列使用[107]

109、我在所有 Django 项目中都用的 20 个包[108]

110、Python 元类的真实案例[109]

111、一万亿行气象数据的编程挑战[110]

112、白宫建议使用 Python 等内存安全语言[111]

113、回顾 Requests 库的问题[112]

114、Python 的 UV 工具确实相当不错[113]

115、Python 生成器未得到充分利用[114]

116、使用 Python 作高级 Web 抓取:从任意网站抓取数据[115]

117、Django REST 框架 + Vue 对比 Django + HTMX[116]

118、可组合数据系统之路:对过去 15 年和未来的思考[117]

119、用 Django 作 SQLite 基准测试[118]

120、Python 3.13 的 JIT 是如何实现的?[119]

121、Python 网页抓取的终极指南[120]

122、为简单架构作辩护[121]

123、关于“调度”的内部原理[122]

124、使用 Python 从头开始实现 RSA[123]

125、Python IAQ:不常见的问题[124]

126、为什么我喜欢 Nox?[125]

127、我最喜欢的数据结构:trie[126]

128、用 Python 处理 CSV 文件的速度能有多快?[127]

129、Django 项目的多语言支持[128]

130、Python 升级手册:Lyft 如何大规模升级 1500+ 代码仓[129]

131、将 Tailwind CSS 添加到 Django 的最简单方法[130]

132、初学者意想不到的 Python 陷阱[131]

133、使用 Python 和 Grafana 更好地冷却我的 PC[132]

134、使用搭载骁龙 8 Gen 3 的安卓手机运行 AI 大模型[133]

135、入行 14 年,我还是觉得编程很难[134]

136、为什么我们公司还在用 Python 开发项目?

137、Python 字符串应该用双引号还是单引号?

138、介绍 Python 上下文管理器及其语法糖[135]

139、Python deque 使用教程[136]

140、Python 的泛型函数和泛型类[137]

141、Python Gevent 实践:常见的陷阱[138]

142、Python pickles 的安全问题[139]

143、构建开源去中心化的电子书搜索引擎[140]

144、Python import 跟 Java import 有什么区别?[141]

145、[PDM 的内部实现(1)](https://frostming.com/2024/pdm-lockfile/ "PDM 的内部实现(1 "PDM 的内部实现(1)")")

146、Python 中有指针吗?[142]

147、当 Python 无法线程化时:深入了解 GIL 的影响[143]

148、我的开源优先级转变了[144]

149、如何远程唤醒家里的电脑?[145]

150、Python 程序的内存占用情况[146]

151、正则表达式字符“\$”并不意味着“字符串末尾”[147]

152、介绍 Python 中所有的双下方法[148]

153、Python 多语言支持实现国际化与本地化的最佳实践[149]

154、在 Windows 上利用 Qwen 大模型搭建一个 ChatGPT 式的问答小助手[150]

155、[(如何(用Python)开发一个(Lisp)解释器)](https://www.norvig.com/lispy.html "(如何(用Python "(如何(用Python)开发一个(Lisp)解释器)")开发一个(Lisp)解释器)")

156、使用 Python 解析 URL[151]

157、Python 鸭子类型:编写灵活且解耦的代码[152]

158、用 Python 实现最小可用的 PostgreSQL[153]

159、给框架开发者的建议[154]

160、蒙特利尔效应:为什么编程语言需要有风格沙皇[155]

161、去中心化的边缘计算平台[156]

162、设计一个纯 Python Web 框架[157]

163、修复 PyPy 增量 GC 中的 一个 bug[158]

164、复活 PyMiniRacer,Python 中的 V8[159]

165、Python 与 Javascript 进行数据通信[160]

166、更适合慢函数调用的 Python 缓存实现[161]

167、使用 Collectfasta 加速 Django 的 collectstatic 命令[162]

168、用原生 Python 扩展和 Dispatch 实现分布式协程[163]

169、使用 Numba 加快代码速度的错误方法[164]

170、关于优化 Django 系统检查框架[165]

171、大数定律,为什么去赌场是个坏主意[166]

172、AutoDev:微软发布的自动化 AI 驱动开发框架[167]

173、我坚持用 Django 而不是 FastAPI 的 10 个原因[168]

174、Django 与 ASGI 服务器[169]

175、JSON 中的数字到底是什么?[170]

176、CPython 源码解析:为什么 Python 列表相乘的结果那么奇怪?[171]

177、Celery 源码分析系列[172]

178、我在 2024 年如何管理 Python[173]

179、使用 Pyodide 和 WebAssembly 将 Python 引入 Cloudflare Workers[174]

180、学习使用和不使用 AI 编码[175]

181、使用 Whisper、FFmpeg 和 Python 轻松转录视频并添加字幕[176]

182、如何用 GitHub Actions 自动执行数据爬取?[177]

183、使用断点调试 Python 代码[178]

184、Python “真正的”匿名函数[179]

185、如何用 Python 预测日食的时间和轨迹?[180]

186、我在开源软件上全职工作 503 天的经验分享[181]

187、修复 Python 代码坏味道的最佳实践[182]

188、如何用 Python 作质因式分解?[183]

189、Supervisor-持久化进程部署方案[184]

190、PEP-744 – 关于 JIT 编译[185]

191、Zapier 如何能自动执行数十亿个任务?[186]

192、Meta 使用单体架构仅 5 个月就发布了 Threads[187]

193、Python 命名约定:最佳实践和示例[188]

194、Great_Tables 的设计理念[189]

195、Python 为什么不能将列表作为字典的键?[190]

196、使用树莓派+Python+Influxdb 开发温度监测器[191]

197、如何用单行 Python 代码通过面试编码[192]

198、当你的老师希望你去做开源[193]

199、我每天在用的 Python f-string 代码[194]

200、用 Django 和 OpenAI 开发一款语音笔记应用[195]

201、Python Web 开发者的最佳安全实践[196]

202、Fedora 希望为其 Python 构建作“-O3”优化[197]

203、Ruff v0.4.0:一个手写的 Python 递归下降解析器[198]

204、给 Django RSS 源设置样式[199]

205、Python 中快捷的概率过滤器[200]

206、Code Review 时,曾被我忽视的 3 件重要小事[201]

207、用 Python 记录下今天敲了多少次键盘[202]

208、是否应该使用上界版本约束?[203]

209、如何开发一个代码格式化工具?[204]

210、公布 py2wasm:将 Python 程序转换为 Wasm[205]

211、对比 Ruby 与 Python 的 for 循环[206]

212、Python 小陷阱:strip、lstrip、rstrip 删除内容比预期的多[207]

213、用 Python 讲解进程间通信的核心机制[208]

214、PEP 745 – Python 3.14 的发布计划[209]

215、Python 不同数据结构的时间复杂度[210]

216、从第一性原理出发理解 Django[211]

217、Python 线程池的源码实现分析与相关问题探讨[212]

218、如何用 Python 设计和实现插件架构?[213]

219、浅谈 Python、Go、Rust 的异常处理[214]

220、mpmetrics 内存管理的设计[215]

221、编程语言中分号的起源和优点[216]

222、谷歌在开发者大会前裁员了 Python、Flutter 和 Dart 团队[217]

223、FastAPI 专家给出的 FastAPI 使用贴士[218]

224、PEP 686:将 UTF-8 模式设为默认配置[219]

225、Pydantic:简化 Python 中的数据验证[220]

226、中小型 Python 项目配置和数据读写的最佳实践[221]

227、为了乐趣和(并发的)收益而给 requests 库打补丁[222]

228、CPython JIT 内部原理:Python 启动时会发生什么?[223]

229、Sleepsort:在线程休眠时排序[224]

230、Python、JavaScript 和 Ruby 用莱布尼茨公式计算 π 的值[225]

231、10 年参加 Python 会议[226]

232、关于 for 循环的一些思考[227]

233、前 1% 精英工程师的 7 个简单的习惯[228]

234、我最喜欢的 Python 3.13 新特性[229]

235、Python 3.13 新功能盘点介绍[230]

236、Python Asyncio 工作原理:从零实现一个简化版 Asyncio[231]

237、友好的 Python:封装和复用[232]

238、零基础入门 Python 文件处理篇——实现一个简单的文件搜索引擎[233]

239、用 HTMX 和 Django 开发一个 Connect Four 游戏[234]

240、用 wxPython 开发一个简单的计算器[235]

241、学生在入门数据科学时常犯的错误[236]

242、使用“不安全的 Python”加速 Numpy 代码 100 倍[237]

243、Python 字典详细的历史演变过程[238]

244、重新发明 Python notebook 的经验教训[239]

245、Python 软件基金会新闻:2022 和 2023 资助计划的透明度报告[240]

246、引人注目的 Python Streamlit:精美的交互式地图和图表[241]

247、我絕不用 result 作為變數名稱[242]

248、Python 中使用 Loguru 记录日志[243]

249、35 道 Django 技术面试题[244]

250、Python 的集合是没有值的字典[245]

251、使用 Sliver 渗透测试套件的针对 Mac 的 PyPi 包后门[246]

252、为什么 TensorFlow 正在缓慢消亡?[247]

253、Python 中的延迟计算是什么?[248]

254、为什么要看 Python 源码?它的结构长什么样子?

255、2014 年我的 10 个业余项目[249]

256、无需数学公式,解释 LLM 的工作原理[250]

257、替代实现的问题[251]

258、正则表达式匹配可以很简单且高速[252]

259、如何利用内存中还在运行的代码,恢复已删除的源码?[253]

260、PEP-667:命名空间的一致视图[254]

261、用 100 行代码替换 pyinstaller[255]

262、py.space:免费开发在线的 Python 应用[256]

263、使用 Python 3.12 作静态类型函数式编程[257]

264、如何用 Python 动态生成 Github 个人主页 README?[258]

265、用 pyastgrep 作自定义 linting[259]

266、使用 pygments 生成代码片段的图片[260]

267、使用纯 NumPy 实现 Llama 3[261]

268、AI 帮你写的代码,所有权归谁?[262]

269、聪明的代码可能是你写过最糟糕的代码[263]

270、我「接见」了诺奖得主[264]

271、450 天成为 Python 核心开发者[265]

272、Python 如何比较浮点数和整数?[266]

273、JIT 和移除 GIL 都不是我最期待的 Python 3.13 特性[267]

274、从事 Python 打包工作 6 年的不为人知的故事[268]

275、庆祝 Beautiful Soup 的 20 周年[269]

276、曾经最喜欢 Ruby,现在可能是 Python[270]

277、使用 Postgres 的 Django 异步任务队列(不是 Kafka、Rabbit MQ、Celery 或 Redis)[271]

278、在 Streamlit 中支持异步 MongoDB 操作[272]

279、LangChain 实战:利用 LangChain SQL Agent 和 GPT 进行文档分析和交互[273]

280、pyo3_asyncio:Python Asyncio 事件循环的 Rust 绑定[274]

281、PyPy 已经悄悄地为我工作了好几年了[275]

282、许多实用的 Python 命令行程序[276]

283、我最喜欢教的编程问题:数字长度[277]

284、修复 Python 循环导入的一种方法[278]

285、PEP-789:限制异步生成器的 yield,防止任务取消错误[279]

286、我的 PyCon US 2024 回顾[280]

287、Python 开发游戏如何选择引擎?[281]

288、ChatTTS:语气韵律媲美真人的开源 TTS 模型[282]

289、使用特定的算法将运行速度提高 15×[283]

290、用 GPT-4o 生成 Flask 项目代码,能做到多好?[284]

291、用 Python 开发 Scrapscript 语言的编译器[285]

292、什么是 Python 的可哈希对象?[286]

293、用一道算法题比较 Python、Go、C++、C、AWK、Forth 和 Rust 的性能[287]

294、给 NumPy 2.0 实现更快速的字符串函数[288]

295、Python 中的 __pycache__ 文件夹是什么?[289]

296、CPython 垃圾回收:内部机制和实现算法[290]

297、从零开始搭建自己的相似图片搜索引擎[291]

298、使用 Pydantic Logfire 满足你的日志记录需求[292]

299、FastAPI 深度揭秘:高效 Web 开发指南[293]

300、通过用 Python 实现 HTTP 服务器来理解它[294]

301、我对“Excel 里的 Python”的看法[295]

302、用 Python 将卷曲文本的图像提取成 PDF[296]

303、Python Celery 的缺陷[297]

304、事件驱动的 Ansible,是什么、为什么以及如何使用?[298]

305、我国出版的 Python 教材几乎都有基本概念错误[299]

306、NumPy 2.0:一个重要的里程碑[300]

307、2024 年 Python 语言峰会:Python 该采用日历版本吗?[301]

308、2024 年 Python 语言峰会:我们应该让 pdb 变得更好吗?[302]

309、2024 年 Python 语言峰会:手机端上的 Python[303]

310、Python 项目管理入门[304]

311、在 Python 中连接字符串:一个“啊哈”时刻[305]

312、掌握上下文管理器,简化 Python 资源管理[306]

313、如何从Pandas 迁移到 Polars[307]

314、向 CPython 添加 JIT 编译器[308]

315、Debug 日志:CPython GH-120437[309]

316、使用 Rust 将 Python AST 的解析速度提高 20 倍[310]

317、Ruff:Rust 开发的 Python linter-formatter 的内部原理[311]

318、最快运行原型的语言[312]

319、PEP-2026 提议 Python 采用日历版本号[313]

320、优化 Python 的路由和调度:一个新的开源求解器 Timefold[314]

321、深入了解 Python 的集合数据结构[315]

322、使用 weakref 介绍 Python 的弱引用[316]

323、这就是软件开发现在的样子[317]

324、在命令行终端使用大语言模型[318]

325、如何将 Python 包发布到 PyPI?[319]

326、基本 Python 项目设置[320]

327、用 Make 提升 Python 开发者体验[321]

328、Notebooks 是代码中的麦当劳[322]

329、花了 6 个月时间开发 LiveAPI 代理,我得到的 10 个经验教训[323]

330、Polars 1.0 版本发布了!今后的计划?[324]

331、Python 努力应对 Apple App Store 的拒绝[325]

332、从 PDF 中提取数据的挑战,实用的 RAG 应用[326]

333、Python 中实现阶乘函数的十种方法[327]

334、Python 开发的最佳实践[328]

335、MicroPython 入门指南:(一)环境配置、Blink、部署[329]

336、Python 使用 .NET 开发的类库来提高你的程序执行效率[330]

337、我的 Python 代码是一种神经网络[331]

338、Python 稀疏数组生态系统概述[332]

339、犯罪分子冒充“乐于助人”的 Stack Overflow 用户推送恶意软件[333]

340、使用 Prettier 对 Django 或 Jinja 模板作格式化[334]

341、保持修改同步的两种方法:派生与测试[335]

342、Python 的包管理工具真是多啊[336]

343、用 Flask 和 HTMX 开发一个动态博客(第 1 篇)[337]

344、PySkyWiFi:利用航空公司漏洞,实现免费上网[338]

345、让 Python 失去随机性[339]

346、ChatGPT 沙盒中 Linux 系统的秘密[340]

347、我用 AI 自动将帽子戴到窗外的纽约人头上[341]

348、pip 与 uv:Streamlit Cloud 如何将程序加载时间缩短 55%?[342]

349、讲座:CPython JIT (Chipy 2024)幻灯片和参考链接[343]

350、Python 包命名的最佳实践[344]

351、系统调用的对决:Python 与 Ruby 的差异[345]

352、利用 GitHub Action 做爬虫,并将数据存在 SQLite 数据库中[346]

353、我从 35 年软件开发生涯中得到的 12 条经验教训[347]

354、写给 15 年前的自己的 10 条编程建议[348]

🐿️项目&资源

1、magic-animate:使用扩散模型的时间一致的人像动画[349]

2、phpy:连通 Python 和 PHP 的生态系统[350]

3、insanely-fast-whisper:快到极致的 Whisper[351]

4、coffee:使用 AI 将 UI 的构建和迭代速度提高 10 倍[352]

5、FastUI:更快构建更好的 UI[353]

6、mistral-src:Mistral AI 7B v0.1 模型的参考实现[354]

7、netchecks:查验网络运行条件的工具[355]

8、Pearl:Meta 推出的强化学习 AI 代理库[356]

9、gpt-fast:简单高效的 PyTorch 原生 Transformer 文本生成[357]

10、The-Grand-Complete-Data-Science-Materials:数据科学的视频和材料[358]

11、awesome-LLMs-In-China:中国的大模型[359]

12、msgspec:高性能的序列化和校验库[360]

13、feedi:打造个人的新闻聚合阅读器[361]

14、generative-ai-python:用 Google AI SDK,开发 Gemini 和 PaLM 应用[362]

15、python-guide-for-javascript-engineers:开源电子书《JavaScript工程师的Python指南》[363]

16、sqlmap:SQL 注入和渗透测试工具[364]

17、TikTokDownloader: TikTok 和抖音数据采集工具[365]

18、Osprey:通过视觉指导微调实现对像素的理解[366]

19、django-cast:基于 Django 和 Wagtail 的博客/播客项目[367]

20、Qexo:快速、强大且漂亮的 Hexo 编辑器[368]

21、project-based-learning:精选的基于项目的教程列表[369]

22、Amphion:用于音频、音乐和语音生成的工具包[370]

23、nicegui:使用 Python 开发 Web 用户界面[371]

24、csvkit:用于转换和处理 CSV 的命令行工具[372]

25、evue:基于 html/css 的高性能 GUI 框架[373]

26、JARVIS:自己的个人语音助手[374]

27、Gooey:只需一行即可将几乎任何 Python 命令行程序转换为完整的 GUI 程序[375]

28、mod:Mojo 的包管理器工具[376]

29、canopy:由 Pinecone 提供支持的 RAG 框架和上下文引擎[377]

30、toogether-backend:Django REST 社交约会 APP 项目[378]

31、DouyinLiveRecorder: 可循环值守和多人录制的直播录制软件[379]

32、StreamDiffusion:用于实时交互式生成的管道级解决方案[380]

33、sqlglot:SQL 解析器和转译器[381]

34、texify:输出 LaTeX 和 Markdown 的数学 OCR 模型[382]

35、talebook:一个简单的在线版个人书库[383]

36、watchfiles:简单快速的文件监听和代码重新加载[384]

37、hy:嵌入在 Python 中的 Lisp 方言[385]

38、pyapp:Python 应用的运行时安装器[386]

39、yarl:一个 URL 解析工具[387]

40、apispec:可插拔的 API 规范生成器,支持 OpenAPI 规范[388]

41、marshmallow:支持复杂对象与简单数据类型相互转换[389]

42、jake:在 GitHub 上轻松创建和部署自己的单链接网站[390]

43、docflow:功能强大的文档管理 API,无缝上传、下载、组织、版本控制、共享[391]

44、auto\_job\_\_find\_\_chatgpt\_\_rpa:基于 ChatGPT 的自动投简历助手[392]

45、oshit:放在命令行终端的 Hacker News[393]

46、mixtral-offloading:在 Colab 或个人电脑上运行 Mixtral-8x7B 模型[394]

47、RecoverPy:以交互方式从终端查找和恢复已删除或覆盖的文件[395]

48、MobileVLM:美团开源的移动设备视觉语言助手[396]

49、ydata-profiling:用于 Pandas 和 Spark DataFrame 的数据分析[397]

50、pdfsyntax:检查和修改 PDF 文件内部结构[398]

51、harlequin:终端里的 SQL IDE[399]

52、litellm:使用 OpenAI 格式调用所有 LLM API[400]

53、unstructured:用于 AI 模型的非结构化数据预处理工具[401]

54、chatgpt-on-wechat: 基于大模型搭建的聊天机器人,支持微信、企业微信、公众号、飞书[402]

55、whisperX:具有单词级时间戳的自动语音识别[403]

56、42 道在线的 Python 编程练习题[404]

57、mealie:自托管的食谱管理和膳食计划项目[405]

58、guardrails:给大语言模型添加护栏[406]

59、chainlit:在几分钟内构建 Python LLM 应用程序[407]

60、functime:用 Polars 构建的时间序列机器学习[408]

61、niquests:使用 HTTP/3、HTTP/2,支持异步的 requests[409]

62、slotscheck:确保你的\_\_slots\_\_正常工作[410]

63、panel:强大的数据探索和 Web 应用框架[411]

64、QAnything:基于任何东西的问答[412]

65、Bert-VITS2-ext: 基于 Bert-VITS2 做的表情、动画测试[413]

66、weread-exporter: 将微信读书中的书籍导出成 epub、pdf、mobi 等格式[414]

67、leetcode-solution:用 Python 解各种 LeetCode 问题[415]

68、CapsWriter-Offline: CapsWriter 离线版,好用的 PC 端语音输入工具[416]

69、surya:任何语言的准确行级文本检测和识别 (OCR)[417]

70、GPT-SoVITS:1分钟的语音也可训练一个好的 TTS 模型[418]

71、trt-llm-rag-windows:使用 TensorRTLLM 在 Windows 上创建 RAG 聊天机器人[419]

72、LangGPT:让每个人都能成为提示词专家[420]

73、core:可用于生产的 AI 助手框架[421]

74、van-gonography:将任意类型的文件隐藏在一张图像中[422]

75、mpmath:任意精度的浮点数运算[423]

76、sqlite-worker:在多线程应用中轻松管理 SQLite[424]

77、granian:用于 Python 程序的 Rust HTTP server[425]

78、fasthx:FastAPI + HTMX 开发框架[426]

79、ml-engineering:机器学习工程开源书籍[427]

80、sglang:专为大型语言模型设计的结构化生成语言[428]

81、chatgpt_telegram_bot:ChatGPT Telegram 机器人,无限制用 GPT-4 [429]

82、HuixiangDou:基于 LLM 的领域知识助手[430]

83、ComfyUI-InstantID:ComfyUI 的 InstantID 的非官方实现[431]

84、ComfyUI-PhotoMaker-ZHO:ComfyUI 的 PhotoMaker 的非官方实现[432]

85、excelCPU:用 Excel 实现的 16 位 CPU 和相关文件[433]

86、whenever:万无一失的 Python 日期时间[434]

87、DeepSeek-Coder:让代码自己编写[435]

88、fastcrud:FastAPI 的异步 CRUD 操作[436]

89、leptonai:简化 AI 服务构建的 Pythonic 框架[437]

90、gpt-newspaper:用 GPT 创建个性化报纸[438]

91、apprise:几乎适用于所有平台的通知推送[439]

92、procrastinate:基于 PostgreSQL 的 Python 任务队列[440]

93、flent:灵活的网络基准测试工具[441]

94、urllib3:新版本支持在浏览器发起 HTTP 请求[442]

95、gnuplotlib:基于 gnuplot 的 numpy 绘图后端[443]

96、history_rag:用 RAG 搭建中国历史问答应用[444]

97、uv:性能极快的 Python 包安装和解析器[445]

98、sqlite-web:基于 Web 的 SQLite 数据库工具[446]

99、celery-exporter:导出 Celery 指标用于 Prometheus[447]

100、pyupgrade:自动升级 Python 较新版本的语法 [448]

101、ollama-python: Ollama Python 库[449]

102、web2pdf:将网页转换为 PDF 的 CLI[450]

103、natural-sql:文本生成 SQL 的大语言模型[451]

104、rawdog:在 CLI 中自动生成并执行 Python 脚本[452]

105、UFO:基于 UI 与 Windows 系统交互的 AI 代理[453]

106、toolong:查看、跟踪、合并和搜索日志文件(以及 JSONL)的终端应用[454]

107、Owl:在本地运行的个人可穿戴 AI[455]

108、hyperdiv:用 Python 构建响应式 Web UI[456]

109、fabric:使用 AI 增强人类[457]

110、ingestr:用单个命令在任何数据库间无缝复制数据[458]

111、justpath:在 Windows 和 Linux 上检查和优化 PATH 环境变量[459]

112、mountaineer:用于 Python 和 React 的自带电池的 Web 框架[460]

113、generate:一个 API 访问国内外大模型平台[461]

114、StringZilla:将 C、C++、Python、Rust 和 Swift 的字符串速度提高 10 倍[462]

115、DrissionPage: 网页自动化工具,能控制浏览器,也能收发数据包[463]

116、Daft:Rust 开发的面向云的分布式 Python DataFrame[464]

117、magika:使用深度学习来检测文件内容的类型[465]

118、frappe:低代码 Web 框架,使用 Python 和 Javascript[466]

119、Umi-OCR: 开源、免费的离线 OCR 软件,支持截屏/批量导入图片[467]

120、xonsh:Python 开发的跨平台的类 Unix 的 shell[468]

121、umami-python:Python 开发的 Umami 分析客户端[469]

122、returns:让函数返回有意义、类型化且安全的内容[470]

123、pyquest:一系列的 Python 编程教程[471]

124、flect:用于构建全栈 Web 应用的 Python 框架[472]

125、docker-android:Docker 里的 Android,支持 noVNC 和视频录制[473]

126、anthropic-sdk-python:调用 Claude 3 等大模型[474]

127、PhotoMaker:制造逼真的人物照片[475]

128、metube:自托管的 YouTube 下载器(youtube-dl/yt-dlp 的 Web UI)[476]

129、cachetools:可扩展的内存化集合和装饰器[477]

130、speedtest-cli:使用 speedtest.net 测试网络带宽的命令行界面[478]

131、Open-Sora-Plan:旨在重现 Sora(Open AI T2V模型)[479]

132、minisora:旨在探索 Sora 的实施路径和未来发展方向[480]

133、flet:用 Python 开发实时的 Web、移动端和桌面程序[481]

134、ss-python:Python 项目模板,涵盖整个开发生命周期[482]

135、dukpy:用于 Python 简化版 JavaScript 解释器[483]

136、PyKidos:一个 Python 编程练习网站[484]

137、hatchet:分布式的容错的任务队列[485]

138、full-stack-fastapi-template:全栈的现代 Web 项目模板[486]

139、bython:带花括号的 Python[487]

140、treq:构建在 Twisted 上的 HTTP 请求库[488]

141、JavSP:汇总多站点数据的视频元数据刮削器[489]

142、botasaurus:强大的网络爬虫框架[490]

143、pywebview:用 JavaScript、HTML 和 CSS 构建 GUI[491]

144、Paper-Piano:在白纸上弹钢琴[492]

145、grok-1:马斯克开源的 Grok[493]

146、DarkGPT:基于 GPT-4-200K,查询泄露的数据库[494]

147、structlog:简单、强大、快速的 Python 日志记录库[495]

148、pydumpling: 针对 Python 的异常调试器[496]

149、can\_ada:快速且符合规范的 URL 解析库[497]

150、Mindgraph:使用 AI 生成和查询不断扩展的知识图谱[498]

151、speechbrain:基于 PyTorch 的语音工具包[499]

152、python-anyconfig:以通用 API 加载和转储各种格式的配置文件[500]

153、Llama-Chinese: Llama 中文社区,最好的中文 Llama 大模型[501]

154、python-for-android:将 Python 程序变成 Android APK[502]

155、img2img-turbo:Stable Diffusion turbo 实现的 sketch2image、day2night 等[503]

156、ludic:用纯 Python 构建动态 HTML 页面的轻量级框架[504]

157、mojo:Mojo 编程语言开源了[505]

158、Suno-API:基于 Python 和 FastAPI 的非官方 Suno API[506]

159、blacken-docs:对文档中的 Python 代码块上运行“black”[507]

160、pathvalidate:用于规范化/验证字符串,例如文件名和文件路径[508]

161、LunarLink: 基于HttpRunner + Django + Vue + Element UI 的接口自动化测试平台[509]

162、leaping:轻量级的 Python 测试调试器[510]

163、keepyourmouthshut:用 AI 能力录制播客[511]

164、MoneyPrinterTurbo:利用AI大模型,一键生成高清短视频[512]

165、AIOS:LLM 代理操作系统[513]

166、LaVague:使用大行动模型框架实现自动化[514]

167、Gmeek:一个完全使用 Github 的博客框架[515]

168、posthog:提供开源产品分析、会话录制、功能标记和 A/B 测试[516]

169、devika:Cognition AI 的 Devin 的开源替代品[517]

170、OpenDevin:Devin 的开源实现[518]

171、SWE-agent:可修复 Github 问题的 AI 软件工程师[519]

172、openui:描述你想要的 UI,它实时帮你生成[520]

173、ragflow:基于深度文档理解的开源 RAG 引擎[521]

174、zibai:高性能的纯 Python WSGI 服务器[522]

175、podgenai:GPT-4 制作有声读物/播客 mp3 生成器[523]

176、qiling:真正可检测的二进制仿真框架[524]

177、maxtext:谷歌推出的简单、高性能及可扩展的 JaxLLM[525]

178、nava:在 Python 中播放声音[526]

179、MuseV:无限长度和高保真的虚拟人视频生成[527]

180、restai:一个 AIaaS(AI 即服务)开源平台[528]

181、open-interpreter:计算机上的自然语言界面[529]

182、narwhals:Polars、pandas、cuDF、Modin 的轻量级可扩展兼容层[530]

183、mantis:可自动发现、侦察和扫描漏洞的安全框架[531]

184、FreeAskInternet:免费私有且本地运行的搜索聚合器与答案生成[532]

185、PyCharm 博客总结的一系列 Django 学习资源[533]

186、great-tables:用 Python 生成信息丰富的精美表格 [534]

187、jiaTansSSHAgent:实现 XZ sshd 某些后门功能[535]

188、docx2python:提取 docx 的页眉、页脚、文本、脚注、尾注、属性和图像[536]

189、WechatMoments:微信朋友圈导出工具[537]

190、low_cost_robot:超低成本实现机械臂[538]

191、drawpyo:用 Python 生成 Draw.io 图表[539]

192、drawdb:免费直观的在线数据库设计工具和 SQL 生成器[540]

193、pylyzer:快速的 Python 静态代码分析器和语言服务器[541]

194、anthropic-cookbook:一些有趣而有效的使用 Claude 的方法[542]

195、Flowmium:用 Rust 写的 Python 工作流编排器[543]

196、github2file:从 Github 下载和处理文件[544]

197、Python 知识备忘录[545]

198、DouZero:通过自玩深度强化学习掌握斗地主[546]

199、dashboard-icons:仪表板图标资源[547]

200、newspaper4k:从新闻网站提取文章、标题和元数据[548]

201、translateLocally:在本机上用 LLM 快速安全地翻译[549]

202、constable:将打印直接插入 AST 进行状态调试[550]

203、TextBlob:情感分析、词性标记、名词短语提取、翻译等[551]

204、wewe-rss:生成微信公众号 RSS,支持私有化部署[552]

205、llama3:Meta Llama 3 的官方仓库[553]

206、llama3-Chinese-chat:Llama3 中文仓库,各种聚合资料[554]

207、reader:将 URL 转换为对 LLM 友好的文本[555]

208、tasktiger:基于 Redis 的 Python 任务队列[556]

209、utt:用 Python 编写的简易命令行时间跟踪器[557]

210、simone:将 YouTube 视频转换为文章进行发布[558]

211、h11:用纯 Python 实现的 HTTP/1.1 库[559]

212、browser-hub:浏览器包装器,可运行多个浏览器实例[560]

213、lingua-py:极准确的自然语言检测库[561]

214、photo-similarity-search:基于苹果芯片的照片相似度 Web 应用[562]

215、Windrecorder:记录屏幕内容,实现记忆搜索[563]

216、logfire:用于 Python 的可观测性工具[564]

217、pyinfra:用 Python 实现基础设施自动化[565]

218、pipxu:使用 UV 在隔离环境中安装和运行 Python 程序[566]

219、tkforge:在 Figma 中拖放创建 Python GUI[567]

220、TagStudio:文件和照片管理系统[568]

221、coredumpy:保存崩溃的站点以作事后调试[569]

222、plane:开源的 JIRA、Linear 和 Asana 替代品[570]

223、Scrapegraph-ai:基于 AI 的 Python 抓取工具[571]

224、tv:自动收集 IPv4 酒店电视直播源[572]

225、netprobe_lite:用 Python 开发的网络性能测试工具[573]

226、dangerzone:将有害的 PDF、office 文档或图像转换为安全的 PDF[574]

227、MS-DOS:MS-DOS 1.25、2.0 和 4.0 的源代码[575]

228、pywinassistant:用自然语言控制 Windows 用户界面[576]

229、chinese-calendar:判断一天是不是法定节假日/工作日[577]

230、Oven:探索 Python PyPI 包[578]

231、tetos:适用于多种 TTS 服务的统一接口[579]

232、relax-py:又一个 Python Web 框架[580]

233、哈佛大学 2024 年 CS50 线上课程[581]

234、portr:专为团队设计的开源的 ngrok 替代方案[582]

235、py-compress-compare:对比分析 zlib、LZ4、Brotli 和 Zstandard[583]

236、pyspread:用 Python 开发的电子表格,可支持 Python 代码[584]

237、PgQueuer:基于 PostgreSQL 的任务队列库[585]

238、你用人工智能做过的最实用的事情是什么?[586]

239、The-Python-Graph-Gallery:数百个用 Python 绘制的图表[587]

240、parler-tts:高质量的 TTS 模型[588]

241、UXsim:道路上的车辆交通流模拟器[589]

242、Quads:基于四叉树的计算机艺术[590]

243、bilibot:用哔哩哔哩用户评论微调的本地聊天机器人[591]

244、pyaction:带有 Python、git 和 Github CLI 的 Docker 容器[592]

245、firecrawl:将整个网站变成 LLM-ready 的 markdown[593]

246、plotille:使用盲文点在终端中绘图[594]

247、petl:Python 提取、转换和加载数据表[595]

248、FunClip:视频语音识别和剪辑工具,集成 AI 剪辑功能[596]

249、map-machine:OpenStreetMap 的 Python 渲染器[597]

250、IC-Light:给图片加上打光照明[598]

251、用于处理 Excel 的 Python 资源[599]

252、yen:Python 虚拟环境管理工具,无需预装 Python[600]

253、Tensor-Puzzles:21 个张量谜题[601]

254、dishka:依赖注入框架[602]

255、hstream:将 Python 脚本转换为 Web 应用[603]

256、cover-agent:AI 自动生成测试,提升代码覆盖率[604]

257、pygments:用 Python 开发的通用型语法高亮工具[605]

258、hashquery:在数据仓库中定义和查询 BI 模型[606]

259、Python 有哪些指标监测库?[607]

260、stamina:可用于生产的 Python 重试库[608]

261、piku:支持对自己的服务器作 git 推送部署[609]

262、mql:用自然语言输入生成 SQL 查询[610]

263、llama-fs:基于 llama 3 的自组织文件系统[611]

264、orjson:快速准确的 JSON 库,支持数据类、日期时间和 Numpy[612]

265、asyncssh:在 asyncio 上提供 SSHv2 协议的异步客户端和服务器[613]

266、ipyblender-experimental:Jupyter 中引入 Blender[614]

267、searxng:免费的互联网元搜索引擎,汇总各种搜索服务和数据库的结果[615]

268、rio:纯 Python 的 Web 开发框架,无需 JavaScript、HTML 和 CSS[616]

269、buku:个人的文本迷你网络[617]

270、resume-builder:纯 Python 开发的简历生成工具[618]

271、more-itertools:比 itertools 丰富的可迭代对象操作[619]

272、tach:强制实施模块化、解耦的包架构[620]

273、Zango:构建企业级应用/微服务的 Python Web 框架[621]

274、pdm:支持最新 PEP 标准的 Python 包和依赖项管理工具[622]

275、Think Python 第三版(免费在线)—Think Python, 3rd edition[623]

276、关于音乐处理的 Python 基础笔记[624]

277、ChatTTS:用于日常对话的生成语音模型[625]

278、几个与 ChatTTS 相关的项目[626]

279、koheesio:构建高效数据管道的 Python 框架[627]

280、groqbook:使用 Groq 和 Llama3 在几秒内生成整本书[628]

281、cachebox:用 Rust 开发的高性能 Python 缓存库[629]

282、mesop:Google 开源基于 Python 的 UI 框架[630]

283、Qwen2:阿里云开源的大模型系列[631]

284、RSS-Translator:简洁可自部署的 RSS 翻译器[632]

285、farfalle:AI 搜索引擎, 用本地或云 LLM 自托管[633]

286、chsrc:全平台命令行换源工具[634]

287、WeasyPrint:非常棒的工具,将 Web 生成 PDF 文档[635]

288、oxo:现代的安全扫描编排器[636]

289、jupyterlab-desktop:JupyterLab 桌面版,基于 Electron[637]

290、teo:模式驱动的 Web 服务端框架[638]

291、aiosql:Python 中的简单 SQL[639]

292、thread:AI 驱动的 Python 笔记本,使用 React 构建[640]

293、OpenRecall:Windows Recall 的开源替代[641]

294、requests-futures:使用 Futures 实现的异步 Python HTTP Requests[642]

295、websocket-client:Python 的 WebSocket 客户端[643]

296、Freeway:WiFi 渗透测试与审计工具[644]

297、cibuildwheel:以最少的配置为所有平台构建 Python wheel[645]

298、超过 6000 份免费的速查表[646]

299、pdf-to-podcast:将任何 PDF 转换为播客节目[647]

300、prettypretty:漂亮的终端颜色库[648]

301、django-render:使用 Django 和 React 构建用户友好的应用[649]

302、holmesgpt:GPT 支持的 DevOps 助手[650]

303、labelme:用 Python 作图像多边形标注[651]

304、aurora:Python 实现的快速、可扩展的静态站点生成器[652]

305、httpstat:使 CURL 统计变得简单[653]

306、writer-framework:用于创建 AI 应用的全栈框架[654]

307、surya:OCR、布局分析、顺序读取、90+ 种语言的行检测[655]

308、MiniCPM-Llama3-V 2.5:手机上媲美 GPT-4V 的多模态 LLM[656]

309、pyod:用于异常值检测 Python 库[657]

310、warp:用于高性能 GPU 仿真和图形的 Python 框架[658]

311、Your-Journey-To-Fluent-Python:你的流畅的 Python 之旅[659]

312、llm:从命令行访问大语言模型[660]

313、lmdocs:使用 LLM 生成 Python 项目的帮助文档[661]

314、make-python-devex:使用 Make、Homebrew、pyenv、poetry 等工具的示例[662]

315、vulture:查找无效的 Python 代码[663]

316、CleanMyWechat: 自动删除 PC 端微信缓存数据[664]

317、wxauto:Windows 版微信自动化,可发送/接收消息,简单微信机器人[665]

318、youdaonote-pull:一键导出/备份有道云笔记的所有笔记[666]

319、reladiff:跨数据库对大型数据集作高性能比对[667]

320、hrms:开源人力资源和薪资管理软件[668]

321、burr:构建能够做出决策的应用(聊天机器人、代理、仿真等)[669]

322、thread:AI 驱动的 Jupyter Notebook[670]

323、graphrag:基于图形的模块化 RAG 系统[671]

324、puepy:基于 PyScript 的 Python+Webassembly 前端框架[672]

325、psqlpy:Rust 写的异步 Python PostgreSQL 驱动[673]

326、pretzelai:Jupyter Notebook 们的现代替代品[674]

327、meet-libai:  构建李白知识图谱,训练 AI 李白智能体[675]

328、flpc:Rust 开发的 Python 正则表达式库[676]

329、Taiwan-LLM:台湾繁体中文 LLM[677]

330、ttkbootstrap:tkinter 的增强主题,受 Bootstrap 启发的现代平面风格[678]

331、bunkerweb:开源的 Web 应用防火墙(WAF)[679]

332、AI-Math-Notes:交互式的 AI 数学黑板[680]

333、cookiecutter-django:快速启动生产就绪的 Django 项目[681]

334、Linly-Talker:数字化身系统,结合大语言模型与视觉模型[682]

335、dnstwist:检测域名的钓鱼攻击、拼写错误抢注和品牌冒充[683]

336、posting:位于终端里的现代 API 客户端[684]

337、filesystem_spec:Python 文件系统应遵守的规范[685]

338、babel:Python 国际化库[686]

339、fastapi-docker-temp:基于 FastAPI 的最小化 Docker 项目模版[687]

340、crawlee-python:Python Web 抓取和浏览器自动化库[688]

341、django-sql-explorer:通过 SQL 查询,在整个公司内轻松共享数据[689]

342、pyxel:Python 的像素风游戏开发引擎[690]

343、0xtools:分析 Linux 系统上应用的性能[691]

344、Secator:渗透测试人员的瑞士军刀[692]

345、rss2newsletter:将 RSS/Atom feed 转换为邮件通讯[693]

346、vectorlite:SQLite 的快速可调节的向量搜索扩展[694]

347、LivePortrait:让人像肖像栩栩如生[695]

🐢播客&视频

1、PSF 官宣一档播客节目:Python 的隐藏人物[696]

2、Talk Python To Me #442 使用 msgspec 作超高速的消息解析[697]

3、DjangoCon US 2023 的视频列表,60 个视频[698]

4、PyConChina 2023 的演讲视频[699]

5、Episode #184:PyCoder's Weekly 的 2023 年总结[700]

6、Requests vs Httpx vs Aiohttp 该选哪一个呢?[701]

7、为什么 Python, Go, Rust, Kotlin 没有三元运算符?[702]

8、 捕蛇者说 Ep 44. 与 Tualatrix 聊聊独立开发使用的技术栈[703]

9、给 Pythonistas 的 Rust 编程入门教程[704]

10、Meta 喜欢 Python[705]

11、Talk Python To Me #449:使用 FastUI 构建 UI[706]

12、带大家感受一下没有 GIL 的 CPython[707]

13、ruff、uv 和 Astral:Python 工具链,使用 Rust 提速[708]

14、使用 Nextjs、Tailwind 和 Django 克隆一个全栈的 Airbnb[709]

15、Django Brew:一档新的 Python 播客[710]

16、使用 Django、Channels 和 HTMX  克隆一个流式 ChatGPT[711]

17、2024 年学习数据科学的系列视频[712]

18、2024 年菲律宾 PyCon 演讲视频列表[713]

19、2024 年构建大语言模型的小指南[714]

20、2023 年的 800 多期 Python 演讲视频[715]

21、教程:使用 Python + HTMX + Tailwind 作 Web 开发[716]

22、core.py[717] Ep 10:开发者聊 Python 3.13 的 REPL[718]

23、The Python Show 40 - 与 Antonio Cuni 一起聊开源开发[719]

24、你最喜欢的有关 Python 的 YouTube 频道是什么?[720]

25、PyCon 2024 现场录制的播客[721]

26、图灵奖得主巡礼系列播客,已更新 15 期[722]

27、PyCon US 2024 演讲视频列表[723]

28、PyCon Sweden 2024 演讲视频[724]

🥂讨论&问题

1、为什么 Python 会有.venv 虚拟环境的概念?[725]

2、Java 如何调用含有第三方依赖的 Python 项目?[726]

附录

1、Python on Mobile: State of the Union[727]

2、为什么我不推荐写所谓的 main 函数?[728]

3、“降临节日历”系列文章[729]

4、faster-whisper:使用 CTranslate2 作更快的 Whisper 转录[730]

5、Reclaiming the Web with a Personal Reader[731]

6、Flask 已死,FastAPI 永生[732]

7、理性参与讨论《Flask 已死,FastAPI 永生》[733]

8、数据兔子洞:爱丽丝从 Pandas 到 DuckDB 仙境的冒险[734]

9、PEP-3141--数字的类型层级[735]

10、ByteTalk 3. 跟图拉鼎聊聊独立开发者的那些事[736]

11、Fortran 社区的讨论[737]

12、Polars 实用教程[738]

13、用 SQL 求解魔方[739]

14、用 SQL 实现量子计算机模拟器[740]

15、Python uv 中文翻译[741]

16、Rye: a Hassle-Free Python Experience[742]

17、Rye Grows With UV[743]

18、Python 及很多项目的 EOL 时间[744]

19、谷歌、微软、Meta?谁才是 Python 最大的金主?[745]

20、tox 教程[746]

21、将指针的地狱引入 Python[747]

22、uv - Python 包的下一次演变?[748]

23、suno 逆向工程 API[749]

24、Python 之父为什么嫌弃 lambda 匿名函数?[750]

25、Google 内部专注于代码质量的“Code Health”系列[751]

26、RSS 预览美化[752]

27、开发编程语言的十年[753]

28、通过 for 循环,比较 Python 与 Ruby 编程思想的差别[754]

29、编程语言的四种错误处理方法[755]

30、两种风格的错误处理[756]

31、将 Python 错误作为值:比较 Go 和 Rust 的使用模式[757]

32、Python 为什么不用分号作终止符?[758]

33、h2:HTTP/2 协议栈的纯 Python 实现[759]

34、Tkinter-Designer[760]

35、使用 Python + HTMX + Tailwind 作 Web 开发[761]

36、What's New In Python 3.13[762]

37、翻译:ython Asyncio 工作原理:从零实现一个简化版 Asyncio[763]

38、chinese-calendar[764]

39、对比最流行的 6 个 Python 日志记录库[765]

40、提名高天为 Python 核心开发者[766]

41、Python 中 -m 的典型用法、原理解析与发展演变[767]

42、Python 已经支持中文变量名啦![768]

43、NumPy 2.0.0 Release Notes[769]

44、Polars vs. pandas:有什么区别?[770]

45、Python 论坛的详细讨论[771]

46、翻译:Python 的包管理工具真是多啊[772]

47、如何上手最新的 CPython JIT?[773]

参考资料

[1] 

PEP-738:将 Android 添加为第 3 层支持的平台: https://pep-previews--3586.org.readthedocs.build/pep-0738/#

[2] 

深度解析 Marker:AI 驱动的 PDF 布局检测引擎的源码解读: https://journal.hexmos.com/marker-pdf-document-ai/

[3] 

现实世界的 match/case: https://nedbatchelder.com/blog/202312/realworld_matchcase.html

[4] 

pytest 守护进程:提升 10 倍本地测试迭代速度: https://discord.com/blog/pytest-daemon-10x-local-test-iteration-speed

[5] 

使用 Python 88 行代码写一个简易的 Android AI 程序: https://vra.github.io/2023/10/14/android-ai-app-in-88-lines-of-python-code/

[6] 

在 Python 中不需要这些无谓的操作: https://www.bitecode.dev/p/you-dont-need-this-in-python

[7] 

为什么要用“if TYPE_CHECKING”?: https://vickiboykis.com/2023/12/11/why-if-type_checking/

[8] 

对比 SQLALchemy 与 Django ORM: https://st4lk.github.io/en/blog/2023/12/09/sqlalchemy-vs-django-orm/

[9] 

Python init.py 的最佳实践: https://coderslegacy.com/python-init-py-best-practices/

[10] 

Mojo:来自一位 Python 研究员的观点: https://augierpi.gricad-pages.univ-grenoble-alpes.fr/mojo-the-point-of-view-of-a-researcher-using-python.html

[11] 

Python 中的简单 HTTP 状态码: https://www.b-list.org/weblog/2023/dec/04/python-http-status-codes/

[12] 

CPython 开发实战:实现 None 感知运算符 ?. 和 ??: https://juejin.cn/post/7310101543776829440

[13] 

代码的运行多于被阅读: https://olano.dev/2023-11-30-code-is-run-more-than-read/

[14] 

在并行程序中实际最多能用多少个 CPU?: https://pythonspeed.com/articles/cpu-thread-pool-size/

[15] 

你的 Python 包都装到哪了?: https://frostming.com/2019/03-13/where-do-your-packages-go/

[16] 

移除 CPython 中的私有 C API 函数: https://vstinner.github.io/remove-c-api-funcs-313.html

[17] 

Python 小陷阱:复制列表时的问题: https://andrewwegner.com/python-gotcha-list-copy.html

[18] 

取消 Asyncio 任务的最佳实践: https://superfastpython.com/asyncio-task-cancellation-best-practices/

[19] 

Python 项目中的配置:没有魔法,只是必要的实践: https://robertrode.com/2023/10/02/configuration-in-python-applications-no-magic-just-necessary-practice.html

[20] 

优化 Python 的 Flask、Django 和 FastAPI 程序: https://tonybaloney.github.io/posts/fine-tuning-wsgi-and-asgi-applications.html

[21] 

为什么 Python、Go 和 Rust 都不支持三元运算符?: https://pythoncat.top/posts/2023-04-03-condition

[22] 

Python 中的“key”参数的关键: https://www.thepythoncodingstack.com/p/the-key-to-the-key-parameter-in-python

[23] 

从 Python 数据类中消除状态突变方法: https://rednafi.com/python/dataclasses_and_methods/

[24] 

Flask 已死,FastAPI 是未来: https://zhuanlan.zhihu.com/p/672806587

[25] 

Python + Flask 打造属于自己的 RSS 安全信息流: https://xz.aliyun.com/t/12980

[26] 

Microdot:又一个 Python Web 框架: https://blog.miguelgrinberg.com/post/microdot-yet-another-python-web-framework

[27] 

周末 AI 项目:在 2004 年的诺基亚 9500 上运行 7B 大型语言模型: https://ai.plainenglish.io/a-weekend-ai-project-running-a-7b-large-language-model-on-a-nokia-9500-from-2004-04f77e123194

[28] 

Python Asyncio 之常见的三个坑: https://so1n.me/2023/12/28/python_asyncio_lib_how_to_use_it_correctly/

[29] 

Bash、Lua、Python 和 Rust 的梦幻岛冒险: https://dev.to/proteusiq/to-code-and-beyond-a-neverland-adventure-in-bash-lua-python-and-rust-1jon

[30] 

YAML、Python 和 Holy Graal: https://yamlscript.org/posts/advent-2023/dec-21/

[31] 

“Python -m”:最酷的 Python 标记,真的值得更多关注: https://www.blog.dailydoseofds.com/p/python-m-the-coolest-python-flag

[32] 

Python CI 的初学者指南: https://switowski.com/blog/ci-101/

[33] 

Python Type Hints 简明教程(基于 Python 3.12): https://zhuanlan.zhihu.com/p/464979921

[34] 

Pyinstaller EXE 被检测为病毒?解决方案和替代方案: https://coderslegacy.com/pyinstaller-exe-detected-as-virus-solutions/

[35] 

Fontimize 简介|精确字体子集,仅使用你网站的字符: https://daveon.design/introducing-fontimize-subset-fonts-to-exactly-and-only-your-websites-used-characters.html

[36] 

GH-113464:copy-and-patch 的 JIT 编译器: https://github.com/python/cpython/pull/113465

[37] 

消失的隐喻:Zip 和 Paste: https://www.jefftk.com/p/losing-metaphors-zip-and-paste

[38] 

40 亿个 IF 语句: https://andreasjhkarlsson.github.io//jekyll/update/2023/12/27/4-billion-if-statements.html

[39] 

简单聊聊 Python 3.13 的 JIT 方案: https://www.manjusaka.blog/posts/2024/01/03/a-simple-introduction-about-python-jit/

[40] 

在 Python 中读取 Excel 的最快方法: https://hakibenita.com/fast-excel-python

[41] 

Flask 教程:从头开始构建可扩展的 Web 项目: https://realpython.com/flask-project/

[42] 

Python、C、汇编 - 提高 2500 倍余弦相似度运算: https://ashvardanian.com/posts/python-c-assembly-comparison/

[43] 

使用 AI 检测 AI 生成的照片: https://tolkunov.dev/posts/ai-or-not/

[44] 

Python 内置函数 max 有毛病: https://mathspp.com/blog/max-is-broken

[45] 

App 自动化测试之 Appium 应用篇| Appium 常用 API 及操作: https://juejin.cn/post/7318952376593006633

[46] 

使用 Django 构建一个实时消息应用: https://www.photondesigner.com/articles/instant-messenger

[47] 

了解 Python 中的数值数据类型: https://fullspeedpython.com/articles/understanding-numeric-data-types/

[48] 

非阻塞的 Asyncio 日志记录: https://superfastpython.com/asyncio-log-blocking/

[49] 

Instagram 如何仅凭 3 名工程师实现用户规模 1400 万: https://read.engineerscodex.com/p/how-instagram-scaled-to-14-million

[50] 

Google 设计的类 Python 编程语言 Starlark: https://github.com/bazelbuild/starlark/blob/master/design.md

[51] 

数据工程的历史和现状: https://www.dedp.online/part-1/1-introduction/history-and-state-of-data-engineering.html

[52] 

Python 3.13 也有了 JIT 编译器: https://tonybaloney.github.io/posts/python-gets-a-jit.html

[53] 

NumPy 2 即将推出:防止破坏,更新你的代码: https://pythonspeed.com/articles/numpy-2/

[54] 

Python 反直觉地在科学计算中兴起: https://cerfacs.fr/coop/fortran-vs-python

[55] 

在 Pandas 中实现快速高效的不等价连接: https://samukweku.github.io/data-wrangling-blog/notebooks/Fast-and-Efficient-Inequality-Joins-in-Pandas.html

[56] 

Pandas Profiling:详细介绍它的使用: https://www.influxdata.com/blog/pandas-profiling-tutorial/

[57] 

深入了解 Python 的 functools.wraps 装饰器: https://jacobpadilla.com/articles/Functools-Deep-Dive

[58] 

纯 Python 实现的 SIMD: https://www.da.vidbuchanan.co.uk/blog/python-swar.html

[59] 

保护 Flask 程序的最佳实践: https://escape.tech/blog/best-practices-protect-flask-applications/

[60] 

使用服务器发送事件 (SSE) 将实时更新推送到客户端: https://rednafi.com/python/server_sent_events/

[61] 

开发用 AI 驱动的 TODO 应用: https://tolkunov.dev/posts/ai-powered-todo-app/

[62] 

PEP-736 调用时关键字参数的简写语法: https://peps.python.org/pep-0736/

[63] 

如何用 Python 删除图像中的背景?: https://pythonguides.com/remove-background-from-image-in-python/

[64] 

一年后的 Python 打包:回顾 2023 年 Python 的打包: https://chriswarrick.com/blog/2024/01/15/python-packaging-one-year-later/

[65] 

PyCon 2023(美国和澳大利亚)所有演讲视频: https://techtalksweekly.substack.com/p/all-pycon-2023-talks-sorted-by-views

[66] 

Python 的 Synchronized: https://thiagowfx.github.io/2024/01/synchronized-in-python/

[67] 

更快的 Python C 扩展的类型信息: https://bernsteinbear.com/blog/typed-c-extensions/

[68] 

通过示例比较 Kotlin 和 Python 中的协程: https://medium.com/@ms.carmen.alvarez/comparing-coroutines-by-example-in-kotlin-and-python-7e60746eae18

[69] 

Pydantic 处理 1970 年代时间的奇特问题: https://dev.arie.bovenberg.net/blog/pydantic-timestamps/

[70] 

浏览器上的代码游乐场: https://antonz.org/in-browser-code-playgrounds/

[71] 

SQLite 的“database is locked”错误: https://blog.pecar.me/django-sqlite-dblock

[72] 

数据处理神器可不止 Pandas 哦,还有 Polars,全方位解析 Polars: https://www.cnblogs.com/traditional/p/17959796

[73] 

用 Python 函数构建 HTML 组件: https://ricardoanderegg.com/posts/python-build-html-components-lxml/

[74] 

500 行 SQL 实现一个 GPT: https://explainextended.com/2023/12/31/happy-new-year-15/

[75] 

Python 装饰器的 3 个真实案例: https://www.bitecode.dev/p/xmas-decorations-part-3

[76] 

这不是面试建议:Python 不用堆和树实现按优先级过期的 LRU 缓存: https://death.andgravity.com/lru-cache

[77] 

增强 Markdown 语言以实现出色的 Python 图形界面: https://www.taipy.io/posts/augmenting-the-markdown-language-for-great-python-graphical-interfaces

[78] 

7 个 Python 内存优化技巧: https://medium.com/techtofreedom/7-python-memory-optimization-tricks-to-enhance-your-codes-efficiency-5ef65bf415e7

[79] 

Python 中的垃圾回收:你需要知道的事情: https://rushter.com/blog/python-garbage-collector/

[80] 

Postgres 与 DynamoDB:该选择哪个数据库?: https://testdriven.io/blog/postgres-vs-dynamodb/

[81] 

使用 Streamlit 在 Python 中创建仪表板: https://blog.streamlit.io/crafting-a-dashboard-app-in-python-using-streamlit/

[82] 

scrapscript.py 编程语言的实现过程: https://bernsteinbear.com/blog/scrapscript/

[83] 

Python Cryptography 已支持 X.509: https://blog.trailofbits.com/2024/01/25/we-build-x-509-chains-so-you-dont-have-to/

[84] 

我对动态类型感到失望: https://buttondown.email/hillelwayne/archive/i-am-disappointed-by-dynamic-typing/

[85] 

Python “令人失望”的超能力: https://lukeplant.me.uk/blog/posts/pythons-disappointing-superpowers/

[86] 

使用 Django、Django REST 和 Next.js 构建全栈项目: https://dev.to/koladev/building-a-fullstack-application-with-django-django-rest-nextjs-3e26

[87] 

使用 SQL、Node.js、Django 和 Next.js 构建仪表板项目: https://dev.to/andrewbaisden/a-day-in-the-life-of-a-developer-building-a-dashboard-app-with-sql-nodejs-django-and-nextjs-5en7

[88] 

用 Profila 分析你的 Numba 代码: https://pythonspeed.com/articles/numba-profiling/

[89] 

Python datetime 标准库的 10 个陷阱: https://dev.arie.bovenberg.net/blog/python-datetime-pitfalls/

[90] 

使用 Python 纠正语法的 4 种方法: https://www.listendata.com/2024/01/4-ways-to-correct-grammar-with-python.html

[91] 

Python 调试技巧: https://www.syntaxerror.tech/syntax-error-11-debugging-python/

[92] 

调试 Python 与 C 语言混合的项目: https://developer.nvidia.com/blog/debugging-mixed-python-and-c-language-stack/

[93] 

分析“使用 Python 和 2MB RAM 对一百万个 32 位整数进行排序”: https://www.bitecode.dev/p/analyzing-sorting-a-million-32-bit

[94] 

使用 Python + Pylasu 实现语言解析器: https://tomassetti.me/implement-parsers-with-pylasu/

[95] 

动态规划不是黑魔法: https://qsantos.fr/2024/01/04/dynamic-programming-is-not-black-magic/

[96] 

什么时候应避免静态类型检查?: https://typing.readthedocs.io/en/latest/source/typing_anti_pitch.html

[97] 

实用指南:用 Python 运行开源的 LLM: https://christophergs.com/blog/running-open-source-llms-in-python

[98] 

uv:Rust 开发的 Python 打包工具: https://astral.sh/blog/uv

[99] 

Rye:愿景延续: https://lucumr.pocoo.org/2024/2/4/rye-a-vision/

[100] 

为什么越来越多用 Rust 开发的库?: https://baincapitalventures.com/insight/why-more-python-developers-are-using-rust-for-building-libraries/

[101] 

80 行 Python 实现一个搜索引擎: https://www.alexmolas.com/2024/02/05/a-search-engine-in-80-lines.html

[102] 

如何计算 Python 中的 CPU 指令数?: https://blog.mattstuchlik.com/2024/02/08/counting-cpu-instructions-in-python.html

[103] 

Python 复用装饰器代码: https://www.kawabangga.com/posts/5757

[104] 

像专业人士一样处理 Asyncio 任务: https://jacobpadilla.com/articles/handling-asyncio-tasks

[105] 

使用 textwrap 模块操作字符串: https://martinheinz.dev/blog/108

[106] 

总结 Python 版本间的主要变更点: https://www.nicholashairs.com/posts/major-changes-between-python-versions/

[107] 

将 Postgres 作为队列使用: https://leontrolski.github.io/postgres-as-queue.html

[108] 

我在所有 Django 项目中都用的 20 个包: https://learndjango.com/tutorials/20-django-packages-i-use-every-project

[109] 

Python 元类的真实案例: https://dev.to/anbagu/real-case-of-python-metaclass-application-2pj8

[110] 

一万亿行气象数据的编程挑战: https://blog.coiled.io/blog/1trc.html

[111] 

白宫建议使用 Python 等内存安全语言: https://pyfound.blogspot.com/2024/02/white-house-recommends-.html

[112] 

回顾 Requests 库的问题: https://blog.ian.stapletoncordas.co/2024/02/a-retrospective-on-requests

[113] 

Python 的 UV 工具确实相当不错: https://micro.webology.dev/2024/02/29/pythons-uv-tool.html

[114] 

Python 生成器未得到充分利用: https://www.slashtmp.io/posts/generators/

[115] 

使用 Python 作高级 Web 抓取:从任意网站抓取数据: https://jacobpadilla.com/articles/advanced-web-scraping-techniques

[116] 

Django REST 框架 + Vue 对比 Django + HTMX: https://testdriven.io/blog/drf-vue-vs-django-htmx/

[117] 

可组合数据系统之路:对过去 15 年和未来的思考: https://wesmckinney.com/blog/looking-back-15-years/

[118] 

用 Django 作 SQLite 基准测试: https://blog.pecar.me/django-sqlite-benchmark

[119] 

Python 3.13 的 JIT 是如何实现的?: https://zhuanlan.zhihu.com/p/682997904

[120] 

Python 网页抓取的终极指南: https://proxiesapi.com/articles/web-scraping-in-python-the-complete-guide

[121] 

为简单架构作辩护: https://danluu.com/simple-architectures/

[122] 

关于“调度”的内部原理: https://tontinton.com/posts/scheduling-internals/

[123] 

使用 Python 从头开始实现 RSA: https://coderoasis.com/implementing-rsa-from-scratch-in-python/

[124] 

Python IAQ:不常见的问题: https://norvig.com/python-iaq.html

[125] 

为什么我喜欢 Nox?: https://hynek.me/articles/why-i-like-nox/

[126] 

我最喜欢的数据结构:trie: https://jamesg.blog/2024/01/16/trie/

[127] 

用 Python 处理 CSV 文件的速度能有多快?: https://datapythonista.me/blog/how-fast-can-we-process-a-csv-file

[128] 

Django 项目的多语言支持: https://medium.com/@sakhawy/multilingual-support-in-django-5706e1e144a8

[129] 

Python 升级手册:Lyft 如何大规模升级 1500+ 代码仓: https://eng.lyft.com/python-upgrade-playbook-1479145d52f4

[130] 

将 Tailwind CSS 添加到 Django 的最简单方法: https://www.photondesigner.com/articles/tailwind-with-django

[131] 

初学者意想不到的 Python 陷阱: https://www.bitecode.dev/p/unexpected-python-traps-for-beginners

[132] 

使用 Python 和 Grafana 更好地冷却我的 PC: https://calbryant.uk/blog/better-pc-cooling-with-python/#

[133] 

使用搭载骁龙 8 Gen 3 的安卓手机运行 AI 大模型: https://soulteary.com/2024/02/29/run-large-ai-models-on-android-phones-with-snapdragon-8-gen-3.html

[134] 

入行 14 年,我还是觉得编程很难: https://www.piglei.com/articles/programming-is-still-hard-after-14-years/

[135] 

介绍 Python 上下文管理器及其语法糖: https://bjoernricks.github.io/posts/python/context-manager

[136] 

Python deque 使用教程: https://mathspp.com/blog/python-deque-tutorial

[137] 

Python 的泛型函数和泛型类: https://guicommits.com/python-generic-type-function-class/

[138] 

Python Gevent 实践:常见的陷阱: https://upsun.com/blog/python-gevent-best-practices/

[139] 

Python pickles 的安全问题: https://lwn.net/SubscriberLink/964392/498a12fe44f51139/

[140] 

构建开源去中心化的电子书搜索引擎: https://github.com/j2qk3b/ebook-demo/blob/main/tutorial.md

[141] 

Python import 跟 Java import 有什么区别?: https://juejin.cn/post/7345423755948572726

[142] 

Python 中有指针吗?: https://nedbatchelder.com/blog/202403/does_python_have_pointers.html

[143] 

当 Python 无法线程化时:深入了解 GIL 的影响: https://pythonspeed.com/articles/python-gil/

[144] 

我的开源优先级转变了: https://gregoryszorc.com/blog/2024/03/17/my-shifting-open-source-priorities/

[145] 

如何远程唤醒家里的电脑?: https://bernsteinbear.com/blog/wakeonlan/

[146] 

Python 程序的内存占用情况: https://codebeez.nl/blogs/the-memory-footprint-of-your-python-application/

[147] 

正则表达式字符“$”并不意味着“字符串末尾”: *https://sethmlarson.dev/regex-$-matches-end-of-string-or-newline*

[148] 

介绍 Python 中所有的双下方法: https://www.pythonmorsels.com/every-dunder-method/

[149] 

Python 多语言支持实现国际化与本地化的最佳实践: https://juejin.cn/post/7348264185325568036

[150] 

在 Windows 上利用 Qwen 大模型搭建一个 ChatGPT 式的问答小助手: https://juejin.cn/post/7347670979634167823

[151] 

使用 Python 解析 URL: https://tkte.ch/articles/2024/03/15/parsing-urls-in-python.html

[152] 

Python 鸭子类型:编写灵活且解耦的代码: https://realpython.com/duck-typing-python/

[153] 

用 Python 实现最小可用的 PostgreSQL: https://ivdl.co.za/2024/03/02/pretending-to-be-postgresql-part-one-1/

[154] 

给框架开发者的建议: https://deven.codes/posts/building-for-builders/

[155] 

蒙特利尔效应:为什么编程语言需要有风格沙皇: https://earthly.dev/blog/language-style-czar/

[156] 

去中心化的边缘计算平台: https://fission.codes/blog/functions-everywhere-only-once/

[157] 

设计一个纯 Python Web 框架: https://reflex.dev/blog/2024-03-21-reflex-architecture/

[158] 

修复 PyPy 增量 GC 中的 一个 bug: https://www.pypy.org/posts/2024/03/fixing-bug-incremental-gc.html

[159] 

复活 PyMiniRacer,Python 中的 V8: https://bpcreech.com/post/mini-racer/

[160] 

Python 与 Javascript 进行数据通信: https://juejin.cn/post/7351690896918003775

[161] 

更适合慢函数调用的 Python 缓存实现: https://docs.sweep.dev/blogs/file-cache

[162] 

使用 Collectfasta 加速 Django 的 collectstatic 命令: https://jasongi.com/2024/03/04/speed-up-djangos-collectstatic-command-with-collectfasta/

[163] 

用原生 Python 扩展和 Dispatch 实现分布式协程: https://stealthrocket.tech/blog/distributed-coroutines-in-python/

[164] 

使用 Numba 加快代码速度的错误方法: https://pythonspeed.com/articles/slow-numba/

[165] 

关于优化 Django 系统检查框架: https://adamj.eu/tech/2024/03/23/django-optimizing-system-checks/

[166] 

大数定律,为什么去赌场是个坏主意: https://easylang.dev/apps/tutorial_mcarlo.html

[167] 

AutoDev:微软发布的自动化 AI 驱动开发框架: https://arxiv.org/html/2403.08299v1

[168] 

我坚持用 Django 而不是 FastAPI 的 10 个原因: https://www.david-dahan.com/blog/10-reasons-i-stick-to-django

[169] 

Django 与 ASGI 服务器: https://fly.io/django-beats/asgi-deployment-options-for-django

[170] 

JSON 中的数字到底是什么?: https://blog.trl.sn/blog/what-is-a-json-number/

[171] 

CPython 源码解析:为什么 Python 列表相乘的结果那么奇怪?: https://codeconfessions.substack.com/p/why-do-python-lists-multiply-oddly

[172] 

Celery 源码分析系列: https://juejin.cn/column/7352789840351887369

[173] 

我在 2024 年如何管理 Python: https://outlore.dev/blog/python-dev-2024/

[174] 

使用 Pyodide 和 WebAssembly 将 Python 引入 Cloudflare Workers: https://blog.cloudflare.com/python-workers

[175] 

学习使用和不使用 AI 编码: https://austinhenley.com/blog/learningwithai.html

[176] 

使用 Whisper、FFmpeg 和 Python 轻松转录视频并添加字幕: https://www.editframe.com/guides/easy-video-transcription-and-subtitling-with-whisper-ffmpeg-and-python

[177] 

如何用 GitHub Actions 自动执行数据爬取?: https://medium.com/data-analytics-at-nesta/how-to-use-github-actions-to-automate-data-scraping-299690cd8bdb

[178] 

使用断点调试 Python 代码: https://www.mostlypython.com/using-breakpoints-to-explore-your-code/

[179] 

Python “真正的”匿名函数: https://lwn.net/Articles/964839/

[180] 

如何用 Python 预测日食的时间和轨迹?: https://erikbern.com/2024/04/07/predicting-solar-eclipses-with-python.html

[181] 

我在开源软件上全职工作 503 天的经验分享: https://mathspp.com/blog/503-days-working-full-time-on-foss-lessons-learned

[182] 

修复 Python 代码坏味道的最佳实践: https://www.arjancodes.com/blog/best-practices-for-eliminating-python-code-smells/

[183] 

如何用 Python 作质因式分解?: https://compucademy.net/prime-factorization-with-python/

[184] 

Supervisor-持久化进程部署方案: https://juejin.cn/post/7354406980784373798

[185] 

PEP-744 – 关于 JIT 编译: https://peps.python.org/pep-0744/

[186] 

Zapier 如何能自动执行数十亿个任务?: https://newsletter.systemdesign.one/p/zapier-architecture

[187] 

Meta 使用单体架构仅 5 个月就发布了 Threads: https://www.infoq.com/news/2024/04/meta-threads-instagram-5-months/

[188] 

Python 命名约定:最佳实践和示例: https://compucademy.net/python-naming-conventions/

[189] 

Great_Tables 的设计理念: https://posit-dev.github.io/great-tables/blog/design-philosophy

[190] 

Python 为什么不能将列表作为字典的键?: https://blog.dailydoseofds.com/p/how-python-prevents-us-from-adding

[191] 

使用树莓派+Python+Influxdb 开发温度监测器: https://nathanielkaiser.xyz/treehousetemps.html

[192] 

如何用单行 Python 代码通过面试编码: https://ivaniscoding.github.io/posts/codeinterview/

[193] 

当你的老师希望你去做开源: https://davidism.com/school-assignment-open-source/

[194] 

我每天在用的 Python f-string 代码: https://pybit.es/articles/python-f-string-codes-i-use-every-day/

[195] 

用 Django 和 OpenAI 开发一款语音笔记应用: https://circumeo.io/blog/entry/building-a-voice-notes-app-with-django-and-openai

[196] 

Python Web 开发者的最佳安全实践: https://www.arjancodes.com/blog/best-practices-for-securing-python-applications/

[197] 

Fedora 希望为其 Python 构建作“-O3”优化: https://fedoraproject.org/wiki/Changes/Python_built_with_gcc_O3

[198] 

Ruff v0.4.0:一个手写的 Python 递归下降解析器: https://astral.sh/blog/ruff-v0.4.0

[199] 

给 Django RSS 源设置样式: https://hyteck.de/post/django-rss

[200] 

Python 中快捷的概率过滤器: https://lemire.me/blog/2024/03/31/fast-and-concise-probabilistic-filters-in-python/

[201] 

Code Review 时,曾被我忽视的 3 件重要小事: https://www.piglei.com/articles/three-little-things-on-code-review/

[202] 

用 Python 记录下今天敲了多少次键盘: https://juejin.cn/post/7358289840268443702

[203] 

是否应该使用上界版本约束?: https://iscinumpy.dev/post/bound-version-constraints/

[204] 

如何开发一个代码格式化工具?: https://yorickpeterse.com/articles/how-to-write-a-code-formatter/

[205] 

公布 py2wasm:将 Python 程序转换为 Wasm: https://wasmer.io/posts/py2wasm-a-python-to-wasm-compiler

[206] 

对比 Ruby 与 Python 的 for 循环: https://softwaredoug.com/blog/2021/11/12/ruby-vs-python-for-loop.html

[207] 

Python 小陷阱:strip、lstrip、rstrip 删除内容比预期的多: https://andrewwegner.com/python-gotcha-strip-functions-unexpected-behavior.html

[208] 

用 Python 讲解进程间通信的核心机制: https://goodyduru.github.io/os/2023/09/08/ipc-introduction.html

[209] 

PEP 745 – Python 3.14 的发布计划: https://peps.python.org/pep-0745/

[210] 

Python 不同数据结构的时间复杂度: https://www.pythonmorsels.com/time-complexities/

[211] 

从第一性原理出发理解 Django: https://www.mostlypython.com/django-from-first-principles-2/

[212] 

Python 线程池的源码实现分析与相关问题探讨: https://juejin.cn/post/7361234872781029388

[213] 

如何用 Python 设计和实现插件架构?: https://mathieularose.com/plugin-architecture-in-python

[214] 

浅谈 Python、Go、Rust 的异常处理: https://juejin.cn/post/7359757993732751375

[215] 

mpmetrics 内存管理的设计: https://blog.trends.tf/memory-management-in-mpmetrics.html

[216] 

编程语言中分号的起源和优点: https://www.ntietz.com/blog/researching-why-we-use-semicolons-as-statement-terminators/

[217] 

谷歌在开发者大会前裁员了 Python、Flutter 和 Dart 团队: https://techcrunch.com/2024/05/01/google-lays-off-staff-from-flutter-dart-python-weeks-before-its-developer-conference/

[218] 

FastAPI 专家给出的 FastAPI 使用贴士: https://github.com/Kludex/fastapi-tips

[219] 

PEP 686:将 UTF-8 模式设为默认配置: https://peps.python.org/pep-0686/

[220] 

Pydantic:简化 Python 中的数据验证: https://realpython.com/python-pydantic/

[221] 

中小型 Python 项目配置和数据读写的最佳实践: https://yanh.tech/2024/04/best-practice-for-configuration-and-data-rw-in-small-and-medium-python-projects/

[222] 

为了乐趣和(并发的)收益而给 requests 库打补丁: https://blog.borrego.dev/entries/patching-requests-for-fun-and-concurrent-profit.html

[223] 

CPython JIT 内部原理:Python 启动时会发生什么?: https://codeconfessions.substack.com/p/cpython-runtime-internals

[224] 

Sleepsort:在线程休眠时排序: https://animeshchouhan.com/posts/sleepsort/

[225] 

Python、JavaScript 和 Ruby 用莱布尼茨公式计算 π 的值: https://www.peterbe.com/plog/leibniz-formula-for-pi

[226] 

10 年参加 Python 会议: https://treyhunner.com/2024/04/10-years-of-python-conferences/

[227] 

关于 for 循环的一些思考: https://buttondown.email/hillelwayne/archive/some-notes-on-for-loops/

[228] 

前 1% 精英工程师的 7 个简单的习惯: https://read.engineerscodex.com/p/7-simple-habits-of-the-top-1-of-engineers

[229] 

我最喜欢的 Python 3.13 新特性: https://treyhunner.com/2024/05/my-favorite-python-3-dot-13-feature/

[230] 

Python 3.13 新功能盘点介绍: https://iscinumpy.dev/post/python-313/

[231] 

Python Asyncio 工作原理:从零实现一个简化版 Asyncio: https://jacobpadilla.com/articles/recreating-asyncio

[232] 

友好的 Python:封装和复用: https://frostming.com/2024/friendly-python-reuse/

[233] 

零基础入门 Python 文件处理篇——实现一个简单的文件搜索引擎: https://juejin.cn/post/7363454217191686181

[234] 

用 HTMX 和 Django 开发一个 Connect Four 游戏: https://www.photondesigner.com/articles/connect4-htmx

[235] 

用 wxPython 开发一个简单的计算器: https://www.pythonpapers.com/p/creating-a-calculator-with-wxpython

[236] 

学生在入门数据科学时常犯的错误: https://austinhenley.com/blog/datasciencemistakes.html

[237] 

使用“不安全的 Python”加速 Numpy 代码 100 倍: https://yosefk.com/blog/a-100x-speedup-with-unsafe-python.html

[238] 

Python 字典详细的历史演变过程: https://discuss.python.org/t/developing-a-detailed-historical-understanding-of-python-dict-implementations/52618

[239] 

重新发明 Python notebook 的经验教训: https://marimo.io/blog/lessons-learned

[240] 

Python 软件基金会新闻:2022 和 2023 资助计划的透明度报告: https://pyfound.blogspot.com/2024/05/psf-grants-program-2022-2023.html

[241] 

引人注目的 Python Streamlit:精美的交互式地图和图表: https://johnloewen.substack.com/p/high-impact-python-streamlit-beautiful

[242] 

我絕不用 result 作為變數名稱: https://blog.kyomind.tw/no-result/

[243] 

Python 中使用 Loguru 记录日志: https://www.blog.pythonlibrary.org/2024/05/15/an-intro-to-logging-with-python-and-loguru/

[244] 

35 道 Django 技术面试题: https://learndjango.com/tutorials/django-technical-interview-questions

[245] 

Python 的集合是没有值的字典: https://mathspp.com/blog/sets-as-dictionaries-with-no-values

[246] 

使用 Sliver 渗透测试套件的针对 Mac 的 PyPi 包后门: https://www.bleepingcomputer.com/news/security/pypi-package-backdoors-macs-using-the-sliver-pen-testing-suite/

[247] 

为什么 TensorFlow 正在缓慢消亡?: https://thenextweb.com/news/why-tensorflow-for-python-is-dying-a-slow-death

[248] 

Python 中的延迟计算是什么?: https://realpython.com/python-lazy-evaluation/

[249] 

2014 年我的 10 个业余项目: https://medium.com/@fogleman/my-top-10-side-projects-from-2014-713a78d6fc9d

[250] 

无需数学公式,解释 LLM 的工作原理: https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math

[251] 

替代实现的问题: https://pointersgonewild.com/2024/04/20/the-alternative-implementation-problem/

[252] 

正则表达式匹配可以很简单且高速: https://swtch.com/~rsc/regexp/regexp1.html

[253] 

如何利用内存中还在运行的代码,恢复已删除的源码?: https://gist.github.com/simonw/8aa492e59265c1a021f5c5618f9e6b12

[254] 

PEP-667:命名空间的一致视图: https://peps.python.org/pep-0667/

[255] 

用 100 行代码替换 pyinstaller: https://tushar.lol/post/packaged/

[256] 

py.space:免费开发在线的 Python 应用: https://jeff.glass/post/pyspace/

[257] 

使用 Python 3.12 作静态类型函数式编程: https://wickstrom.tech/2024-05-23-statically-typed-functional-programming-python-312.html

[258] 

如何用 Python 动态生成 Github 个人主页 README?: https://tduyng.dev/blog/dynamic-github-profile-readme

[259] 

用 pyastgrep 作自定义 linting: https://lukeplant.me.uk/blog/posts/pyastgrep-and-custom-linting/

[260] 

使用 pygments 生成代码片段的图片: https://www.mostlypython.com/generating-code-snippets/

[261] 

使用纯 NumPy 实现 Llama 3: https://docs.likejazz.com/llama3.np/

[262] 

AI 帮你写的代码,所有权归谁?: https://www.theregister.com/2024/05/15/ai_coding_complications/

[263] 

聪明的代码可能是你写过最糟糕的代码: https://read.engineerscode%2A%2A/p/clever-code-is-probably-the-worst

[264] 

我「接见」了诺奖得主: https://frostming.com/2024/meet-with-paul/

[265] 

450 天成为 Python 核心开发者: https://www.bilibili.com/video/BV1of421972c

[266] 

Python 如何比较浮点数和整数?: https://blog.codingconfessions.com/p/how-python-compares-floats-and-ints

[267] 

JIT 和移除 GIL 都不是我最期待的 Python 3.13 特性: https://blog.vslira.net/2024/05/jit-and-gil-removal-are-not-even-my.html

[268] 

从事 Python 打包工作 6 年的不为人知的故事: https://harihareswara.net/posts/2024/references-pycon-us-keynote/

[269] 

庆祝 Beautiful Soup 的 20 周年: https://harihareswara.net/posts/2024/celebrate-beautiful-soups-20th-anniversary/

[270] 

曾经最喜欢 Ruby,现在可能是 Python: https://sgt.hootr.club/molten-matter/maybe-i-like-python-now/

[271] 

使用 Postgres 的 Django 异步任务队列(不是 Kafka、Rabbit MQ、Celery 或 Redis): https://simplecto.com/djang-async-task-postgres-not-kafka-celery-redis

[272] 

在 Streamlit 中支持异步 MongoDB 操作: https://handmadesoftware.medium.com/streamlit-asyncio-and-mongodb-f85f77aea825

[273] 

LangChain 实战:利用 LangChain SQL Agent 和 GPT 进行文档分析和交互: https://juejin.cn/post/7373955162127532059

[274] 

pyo3_asyncio:Python Asyncio 事件循环的 Rust 绑定: https://awestlake87.github.io/pyo3-asyncio/master/doc/pyo3_asyncio

[275] 

PyPy 已经悄悄地为我工作了好几年了: https://utcc.utoronto.ca/~cks/space/blog/python/PyPyQuietlyWorking

[276] 

许多实用的 Python 命令行程序: https://www.pythonmorsels.com/cli-tools/

[277] 

我最喜欢教的编程问题:数字长度: https://jstrieb.github.io/posts/digit-length/

[278] 

修复 Python 循环导入的一种方法: https://nedbatchelder.com/blog/202405/one_way_to_fix_python_circular_imports.html

[279] 

PEP-789:限制异步生成器的 yield,防止任务取消错误: https://peps.python.org/pep-0789/

[280] 

我的 PyCon US 2024 回顾: https://katherinemichel.github.io/portfolio/pycon-us-2024-recap.html

[281] 

Python 开发游戏如何选择引擎?: https://techartlife.com/gamedev/py-game/panda3d-engine-introduction

[282] 

ChatTTS:语气韵律媲美真人的开源 TTS 模型: https://juejin.cn/post/7374988830493868043

[283] 

使用特定的算法将运行速度提高 15×: https://pythonspeed.com/articles/lets-optimize-median-local-threshold/

[284] 

用 GPT-4o 生成 Flask 项目代码,能做到多好?: https://ploomber.io/blog/gpt-4o-flask/

[285] 

用 Python 开发 Scrapscript 语言的编译器: https://bernsteinbear.com/blog/scrapscript-baseline

[286] 

什么是 Python 的可哈希对象?: https://www.thepythoncodingstack.com/p/wheres-william-python-hash-hashable

[287] 

用一道算法题比较 Python、Go、C++、C、AWK、Forth 和 Rust 的性能: https://benhoyt.com/writings/count-words/

[288] 

给 NumPy 2.0 实现更快速的字符串函数: https://labs.quansight.org/blog/numpy-string-ufuncs

[289] 

Python 中的 pycache 文件夹是什么?: https://realpython.com/python-pycache/

[290] 

CPython 垃圾回收:内部机制和实现算法: https://blog.codingconfessions.com/p/cpython-garbage-collection-internals

[291] 

从零开始搭建自己的相似图片搜索引擎: https://juejin.cn/post/7377632288676839439

[292] 

使用 Pydantic Logfire 满足你的日志记录需求: https://kadermiyanyedi.medium.com/fire-up-your-logging-needs-with-logfire-6330d7a08dfe

[293] 

FastAPI 深度揭秘:高效 Web 开发指南: https://juejin.cn/column/7379166365972955146

[294] 

通过用 Python 实现 HTTP 服务器来理解它: https://muhammadraza.me/2024/building-http-server/

[295] 

我对“Excel 里的 Python”的看法: https://www.xlwings.org/blog/my-thoughts-on-python-in-excel

[296] 

用 Python 将卷曲文本的图像提取成 PDF: https://mzucker.github.io/2016/08/15/page-dewarping.html

[297] 

Python Celery 的缺陷: https://docs.hatchet.run/blog/problems-with-celery

[298] 

事件驱动的 Ansible,是什么、为什么以及如何使用?: https://anweshadas.in/event-driven-ansible-what-why-and-how/

[299] 

我国出版的 Python 教材几乎都有基本概念错误: https://zhuanlan.zhihu.com/p/703141066

[300] 

NumPy 2.0:一个重要的里程碑: https://blog.scientific-python.org/numpy/numpy2/

[301] 

2024 年 Python 语言峰会:Python 该采用日历版本吗?: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-should-python-adopt-calver.html

[302] 

2024 年 Python 语言峰会:我们应该让 pdb 变得更好吗?: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-pyrepl-new-pdb.html

[303] 

2024 年 Python 语言峰会:手机端上的 Python: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-python-on-mobile.html

[304] 

Python 项目管理入门: https://martynassubonis.substack.com/p/python-project-management-primer

[305] 

在 Python 中连接字符串:一个“啊哈”时刻: https://berglyd.net/blog/2024/06/joining-strings-in-python/

[306] 

掌握上下文管理器,简化 Python 资源管理: https://coderlegion.com/361/mastering-context-manager-simplifying-resource-management-python

[307] 

如何从Pandas 迁移到 Polars: https://blog.jetbrains.com/pycharm/2024/06/how-to-move-from-pandas-to-polars/

[308] 

向 CPython 添加 JIT 编译器: https://lwn.net/SubscriberLink/977855/5daef5af6b2d4c1b/

[309] 

Debug 日志:CPython GH-120437: https://www.manjusaka.blog/posts/2024/06/19/a-live-debug-gh120437/

[310] 

使用 Rust 将 Python AST 的解析速度提高 20 倍: https://www.gauge.sh/blog/parsing-python-asts-20x-faster-with-rust

[311] 

Ruff:Rust 开发的 Python linter-formatter 的内部原理: https://compileralchemy.substack.com/p/ruff-internals-of-a-rust-backed-python

[312] 

最快运行原型的语言: https://news.alvaroduran.com/p/the-prototypes-language

[313] 

PEP-2026 提议 Python 采用日历版本号: https://peps.python.org/pep-2026/

[314] 

优化 Python 的路由和调度:一个新的开源求解器 Timefold: https://timefold.ai/blog/new-open-source-solver-python

[315] 

深入了解 Python 的集合数据结构: https://blog.codingconfessions.com/p/cpython-set-implementation

[316] 

使用 weakref 介绍 Python 的弱引用: https://martinheinz.dev/blog/112

[317] 

这就是软件开发现在的样子: https://newsletter.goodtechthings.com/p/this-is-what-software-development

[318] 

在命令行终端使用大语言模型: https://simonwillison.net/2024/Jun/17/cli-language-models/

[319] 

如何将 Python 包发布到 PyPI?: https://www.blog.pythonlibrary.org/2024/06/18/how-to-publish-a-python-package-to-pypi/

[320] 

基本 Python 项目设置: https://peateasea.de/basic-python-project-setup/

[321] 

用 Make 提升 Python 开发者体验: https://tech.target.com/blog/make-python-devex

[322] 

Notebooks 是代码中的麦当劳: https://yobibyte.github.io/notebooks.html

[323] 

花了 6 个月时间开发 LiveAPI 代理,我得到的 10 个经验教训: https://journal.hexmos.com/liveapi-engineering-lessons

[324] 

Polars 1.0 版本发布了!今后的计划?: https://pola.rs/posts/announcing-polars-1/

[325] 

Python 努力应对 Apple App Store 的拒绝: https://lwn.net/SubscriberLink/979671/4fb7c1827536d1ae/

[326] 

从 PDF 中提取数据的挑战,实用的 RAG 应用: https://unstract.com/blog/pdf-hell-and-practical-rag-applications/

[327] 

Python 中实现阶乘函数的十种方法: https://compucademy.net/factorial-function-in-python/

[328] 

Python 开发的最佳实践: https://www.stuartellis.name/articles/python-modern-practices/

[329] 

MicroPython 入门指南:(一)环境配置、Blink、部署: https://www.cnblogs.com/zhanggaoxing/p/18276038

[330] 

Python 使用 .NET 开发的类库来提高你的程序执行效率: https://www.cnblogs.com/weskynet/p/18251383

[331] 

我的 Python 代码是一种神经网络: https://blog.gabornyeki.com/2024-07-my-python-code-is-a-neural-network/

[332] 

Python 稀疏数组生态系统概述: https://labs.quansight.org/blog/sparse-array-ecosystem

[333] 

犯罪分子冒充“乐于助人”的 Stack Overflow 用户推送恶意软件: https://www.bleepingcomputer.com/news/security/cybercriminals-pose-as-helpful-stack-overflow-users-to-push-malware/

[334] 

使用 Prettier 对 Django 或 Jinja 模板作格式化: https://til.simonwillison.net/npm/prettier-django

[335] 

保持修改同步的两种方法:派生与测试: https://lukeplant.me.uk/blog/posts/keeping-things-in-sync-derive-vs-test/

[336] 

Python 的包管理工具真是多啊: https://dublog.net/blog/so-many-python-package-managers/

[337] 

用 Flask 和 HTMX 开发一个动态博客(第 1 篇): https://devtoys.io/2024/06/30/building-a-dynamic-blog-with-flask-and-htmx/

[338] 

PySkyWiFi:利用航空公司漏洞,实现免费上网: https://robertheaton.com/pyskywifi/

[339] 

让 Python 失去随机性: https://healeycodes.com/making-python-less-random

[340] 

ChatGPT 沙盒中 Linux 系统的秘密: https://incoherency.co.uk/blog/stories/chatgpt-linux.html

[341] 

我用 AI 自动将帽子戴到窗外的纽约人头上: https://dropofahat.zone/

[342] 

pip 与 uv:Streamlit Cloud 如何将程序加载时间缩短 55%?: https://blog.streamlit.io/python-pip-vs-astral-uv/

[343] 

讲座:CPython JIT (Chipy 2024)幻灯片和参考链接: https://jeff.glass/post/chipyjit2024/

[344] 

Python 包命名的最佳实践: https://joshcannon.me/2024/07/05/package-names.html

[345] 

系统调用的对决:Python 与 Ruby 的差异: https://blog.mattstuchlik.com/2024/07/07/syscall-showdown.html

[346] 

利用 GitHub Action 做爬虫,并将数据存在 SQLite 数据库中: https://jerrynsh.com/how-i-saved-scraped-data-in-an-sqlite-database-on-github/

[347] 

我从 35 年软件开发生涯中得到的 12 条经验教训: https://dev.jimgrey.net/2024/07/03/lessons-learned-in-35-years-of-making-software

[348] 

写给 15 年前的自己的 10 条编程建议: https://mbuffett.com/posts/programming-advice-younger-self/

[349] 

magic-animate:使用扩散模型的时间一致的人像动画: https://github.com/magic-research/magic-animate

[350] 

phpy:连通 Python 和 PHP 的生态系统: https://github.com/swoole/phpy

[351] 

insanely-fast-whisper:快到极致的 Whisper: https://github.com/Vaibhavs10/insanely-fast-whisper

[352] 

coffee:使用 AI 将 UI 的构建和迭代速度提高 10 倍: https://github.com/Coframe/coffee

[353] 

FastUI:更快构建更好的 UI: https://github.com/pydantic/FastUI

[354] 

mistral-src:Mistral AI 7B v0.1 模型的参考实现: https://github.com/mistralai/mistral-src

[355] 

netchecks:查验网络运行条件的工具: https://github.com/hardbyte/netchecks

[356] 

Pearl:Meta 推出的强化学习 AI 代理库: https://github.com/facebookresearch/Pearl

[357] 

gpt-fast:简单高效的 PyTorch 原生 Transformer 文本生成: https://github.com/pytorch-labs/gpt-fast

[358] 

The-Grand-Complete-Data-Science-Materials:数据科学的视频和材料: https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials

[359] 

awesome-LLMs-In-China:中国的大模型: https://github.com/wgwang/awesome-LLMs-In-China

[360] 

msgspec:高性能的序列化和校验库: https://github.com/jcrist/msgspec

[361] 

feedi:打造个人的新闻聚合阅读器: https://github.com/facundoolano/feedi

[362] 

generative-ai-python:用 Google AI SDK,开发 Gemini 和 PaLM 应用: https://github.com/google/generative-ai-python

[363] 

python-guide-for-javascript-engineers:开源电子书《JavaScript工程师的Python指南》: https://github.com/luckrnx09/python-guide-for-javascript-engineers

[364] 

sqlmap:SQL 注入和渗透测试工具: https://github.com/sqlmapproject/sqlmap

[365] 

TikTokDownloader: TikTok 和抖音数据采集工具: https://github.com/JoeanAmier/TikTokDownloader

[366] 

Osprey:通过视觉指导微调实现对像素的理解: https://github.com/CircleRadon/Osprey

[367] 

django-cast:基于 Django 和 Wagtail 的博客/播客项目: https://github.com/ephes/django-cast

[368] 

Qexo:快速、强大且漂亮的 Hexo 编辑器: https://github.com/Qexo/Qexo

[369] 

project-based-learning:精选的基于项目的教程列表: https://github.com/practical-tutorials/project-based-learning

[370] 

Amphion:用于音频、音乐和语音生成的工具包: https://github.com/open-mmlab/Amphion

[371] 

nicegui:使用 Python 开发 Web 用户界面: https://github.com/zauberzeug/nicegui

[372] 

csvkit:用于转换和处理 CSV 的命令行工具: https://github.com/wireservice/csvkit

[373] 

evue:基于 html/css 的高性能 GUI 框架: https://github.com/scriptiot/evue

[374] 

JARVIS:自己的个人语音助手: https://github.com/AlexandreSajus/JARVIS

[375] 

Gooey:只需一行即可将几乎任何 Python 命令行程序转换为完整的 GUI 程序: https://github.com/chriskiehl/Gooey

[376] 

mod:Mojo 的包管理器工具: https://github.com/better-mojo/mod

[377] 

canopy:由 Pinecone 提供支持的 RAG 框架和上下文引擎: https://github.com/pinecone-io/canopy

[378] 

toogether-backend:Django REST 社交约会 APP 项目: https://github.com/damianstone/toogether-backend

[379] 

DouyinLiveRecorder: 可循环值守和多人录制的直播录制软件: https://github.com/ihmily/DouyinLiveRecorder

[380] 

StreamDiffusion:用于实时交互式生成的管道级解决方案: https://github.com/cumulo-autumn/StreamDiffusion

[381] 

sqlglot:SQL 解析器和转译器: https://github.com/tobymao/sqlglot

[382] 

texify:输出 LaTeX 和 Markdown 的数学 OCR 模型: https://github.com/VikParuchuri/texify

[383] 

talebook:一个简单的在线版个人书库: https://github.com/talebook/talebook

[384] 

watchfiles:简单快速的文件监听和代码重新加载: https://github.com/samuelcolvin/watchfiles

[385] 

hy:嵌入在 Python 中的 Lisp 方言: https://github.com/hylang/hy

[386] 

pyapp:Python 应用的运行时安装器: https://github.com/ofek/pyapp

[387] 

yarl:一个 URL 解析工具: https://github.com/aio-libs/yarl

[388] 

apispec:可插拔的 API 规范生成器,支持 OpenAPI 规范: https://github.com/marshmallow-code/apispec

[389] 

marshmallow:支持复杂对象与简单数据类型相互转换: https://github.com/marshmallow-code/marshmallow

[390] 

jake:在 GitHub 上轻松创建和部署自己的单链接网站: https://github.com/thevahidal/jake

[391] 

docflow:功能强大的文档管理 API,无缝上传、下载、组织、版本控制、共享: https://github.com/jiisanda/docflow

[392] 

auto_job__find__chatgpt__rpa:基于 ChatGPT 的自动投简历助手: https://github.com/Frrrrrrrrank/auto_job__find__chatgpt__rpa

[393] 

oshit:放在命令行终端的 Hacker News: https://github.com/davep/oshit

[394] 

mixtral-offloading:在 Colab 或个人电脑上运行 Mixtral-8x7B 模型: https://github.com/dvmazur/mixtral-offloading

[395] 

RecoverPy:以交互方式从终端查找和恢复已删除或覆盖的文件: https://github.com/PabloLec/RecoverPy

[396] 

MobileVLM:美团开源的移动设备视觉语言助手: https://github.com/Meituan-AutoML/MobileVLM

[397] 

ydata-profiling:用于 Pandas 和 Spark DataFrame 的数据分析: https://github.com/ydataai/ydata-profiling

[398] 

pdfsyntax:检查和修改 PDF 文件内部结构: https://github.com/desgeeko/pdfsyntax

[399] 

harlequin:终端里的 SQL IDE: https://github.com/tconbeer/harlequin

[400] 

litellm:使用 OpenAI 格式调用所有 LLM API: https://github.com/BerriAI/litellm

[401] 

unstructured:用于 AI 模型的非结构化数据预处理工具: https://github.com/Unstructured-IO/unstructured

[402] 

chatgpt-on-wechat: 基于大模型搭建的聊天机器人,支持微信、企业微信、公众号、飞书: https://github.com/zhayujie/chatgpt-on-wechat

[403] 

whisperX:具有单词级时间戳的自动语音识别: https://github.com/m-bain/whisperX

[404] 

42 道在线的 Python 编程练习题: https://inventwithpython.com/pythongently/

[405] 

mealie:自托管的食谱管理和膳食计划项目: https://github.com/mealie-recipes/mealie

[406] 

guardrails:给大语言模型添加护栏: https://github.com/guardrails-ai/guardrails

[407] 

chainlit:在几分钟内构建 Python LLM 应用程序: https://github.com/Chainlit/chainlit

[408] 

functime:用 Polars 构建的时间序列机器学习: https://github.com/functime-org/functime

[409] 

niquests:使用 HTTP/3、HTTP/2,支持异步的 requests: https://github.com/jawah/niquests

[410] 

slotscheck:确保你的__slots__正常工作: https://github.com/ariebovenberg/slotscheck/

[411] 

panel:强大的数据探索和 Web 应用框架: https://github.com/holoviz/panel

[412] 

QAnything:基于任何东西的问答: https://github.com/netease-youdao/QAnything

[413] 

Bert-VITS2-ext: 基于 Bert-VITS2 做的表情、动画测试: https://github.com/see2023/Bert-VITS2-ext

[414] 

weread-exporter: 将微信读书中的书籍导出成 epub、pdf、mobi 等格式: https://github.com/drunkdream/weread-exporter

[415] 

leetcode-solution:用 Python 解各种 LeetCode 问题: https://github.com/hogan-tech/leetcode-solution

[416] 

CapsWriter-Offline: CapsWriter 离线版,好用的 PC 端语音输入工具: https://github.com/HaujetZhao/CapsWriter-Offline

[417] 

surya:任何语言的准确行级文本检测和识别 (OCR): https://github.com/VikParuchuri/surya

[418] 

GPT-SoVITS:1分钟的语音也可训练一个好的 TTS 模型: https://github.com/RVC-Boss/GPT-SoVITS

[419] 

trt-llm-rag-windows:使用 TensorRTLLM 在 Windows 上创建 RAG 聊天机器人: https://github.com/NVIDIA/trt-llm-rag-windows

[420] 

LangGPT:让每个人都能成为提示词专家: https://github.com/EmbraceAGI/LangGPT

[421] 

core:可用于生产的 AI 助手框架: https://github.com/cheshire-cat-ai/core

[422] 

van-gonography:将任意类型的文件隐藏在一张图像中: https://github.com/JoshuaKasa/van-gonography

[423] 

mpmath:任意精度的浮点数运算: https://github.com/mpmath/mpmath

[424] 

sqlite-worker:在多线程应用中轻松管理 SQLite: https://github.com/roshanlam/sqlite-worker

[425] 

granian:用于 Python 程序的 Rust HTTP server: https://github.com/emmett-framework/granian

[426] 

fasthx:FastAPI + HTMX 开发框架: https://github.com/volfpeter/fasthx

[427] 

ml-engineering:机器学习工程开源书籍: https://github.com/stas00/ml-engineering

[428] 

sglang:专为大型语言模型设计的结构化生成语言: https://github.com/sgl-project/sglang

[429] 

chatgpt_telegram_bot:ChatGPT Telegram 机器人,无限制用 GPT-4 : https://github.com/father-bot/chatgpt_telegram_bot

[430] 

HuixiangDou:基于 LLM 的领域知识助手: https://github.com/InternLM/HuixiangDou

[431] 

ComfyUI-InstantID:ComfyUI 的 InstantID 的非官方实现: https://github.com/ZHO-ZHO-ZHO/ComfyUI-InstantID

[432] 

ComfyUI-PhotoMaker-ZHO:ComfyUI 的 PhotoMaker 的非官方实现: https://github.com/ZHO-ZHO-ZHO/ComfyUI-PhotoMaker-ZHO

[433] 

excelCPU:用 Excel 实现的 16 位 CPU 和相关文件: https://github.com/InkboxSoftware/excelCPU

[434] 

whenever:万无一失的 Python 日期时间: https://github.com/ariebovenberg/whenever

[435] 

DeepSeek-Coder:让代码自己编写: https://github.com/deepseek-ai/deepseek-coder/

[436] 

fastcrud:FastAPI 的异步 CRUD 操作: https://github.com/igorbenav/fastcrud

[437] 

leptonai:简化 AI 服务构建的 Pythonic 框架: https://github.com/leptonai/leptonai

[438] 

gpt-newspaper:用 GPT 创建个性化报纸: https://github.com/assafelovic/gpt-newspaper

[439] 

apprise:几乎适用于所有平台的通知推送: https://github.com/caronc/apprise

[440] 

procrastinate:基于 PostgreSQL 的 Python 任务队列: https://github.com/procrastinate-org/procrastinate

[441] 

flent:灵活的网络基准测试工具: https://github.com/tohojo/flent

[442] 

urllib3:新版本支持在浏览器发起 HTTP 请求: https://github.com/urllib3/urllib3/releases/tag/2.2.0

[443] 

gnuplotlib:基于 gnuplot 的 numpy 绘图后端: https://github.com/dkogan/gnuplotlib

[444] 

history_rag:用 RAG 搭建中国历史问答应用: https://github.com/wxywb/history_rag

[445] 

uv:性能极快的 Python 包安装和解析器: https://github.com/astral-sh/uv

[446] 

sqlite-web:基于 Web 的 SQLite 数据库工具: https://github.com/coleifer/sqlite-web

[447] 

celery-exporter:导出 Celery 指标用于 Prometheus: https://github.com/danihodovic/celery-exporter

[448] 

pyupgrade:自动升级 Python 较新版本的语法 : https://github.com/asottile/pyupgrade

[449] 

ollama-python: Ollama Python 库: https://github.com/ollama/ollama-python

[450] 

web2pdf:将网页转换为 PDF 的 CLI: https://github.com/dvcoolarun/web2pdf

[451] 

natural-sql:文本生成 SQL 的大语言模型: https://github.com/cfahlgren1/natural-sql

[452] 

rawdog:在 CLI 中自动生成并执行 Python 脚本: https://github.com/AbanteAI/rawdog

[453] 

UFO:基于 UI 与 Windows 系统交互的 AI 代理: https://github.com/microsoft/UFO

[454] 

toolong:查看、跟踪、合并和搜索日志文件(以及 JSONL)的终端应用: https://github.com/Textualize/toolong

[455] 

Owl:在本地运行的个人可穿戴 AI: https://github.com/OwlAIProject/Owl

[456] 

hyperdiv:用 Python 构建响应式 Web UI: https://github.com/hyperdiv/hyperdiv

[457] 

fabric:使用 AI 增强人类: https://github.com/danielmiessler/fabric

[458] 

ingestr:用单个命令在任何数据库间无缝复制数据: https://github.com/bruin-data/ingestr

[459] 

justpath:在 Windows 和 Linux 上检查和优化 PATH 环境变量: https://github.com/epogrebnyak/justpath

[460] 

mountaineer:用于 Python 和 React 的自带电池的 Web 框架: https://github.com/piercefreeman/mountaineer

[461] 

generate:一个 API 访问国内外大模型平台: https://github.com/wangyuxinwhy/generate

[462] 

StringZilla:将 C、C++、Python、Rust 和 Swift 的字符串速度提高 10 倍: https://github.com/ashvardanian/StringZilla

[463] 

DrissionPage: 网页自动化工具,能控制浏览器,也能收发数据包: https://github.com/g1879/DrissionPage

[464] 

Daft:Rust 开发的面向云的分布式 Python DataFrame: https://github.com/Eventual-Inc/Daft

[465] 

magika:使用深度学习来检测文件内容的类型: https://github.com/google/magika

[466] 

frappe:低代码 Web 框架,使用 Python 和 Javascript: https://github.com/frappe/frappe

[467] 

Umi-OCR: 开源、免费的离线 OCR 软件,支持截屏/批量导入图片: https://github.com/hiroi-sora/Umi-OCR

[468] 

xonsh:Python 开发的跨平台的类 Unix 的 shell: https://github.com/xonsh/xonsh

[469] 

umami-python:Python 开发的 Umami 分析客户端: https://github.com/mikeckennedy/umami-python

[470] 

returns:让函数返回有意义、类型化且安全的内容: https://github.com/dry-python/returns

[471] 

pyquest:一系列的 Python 编程教程: https://github.com/ivnvxd/pyquest

[472] 

flect:用于构建全栈 Web 应用的 Python 框架: https://github.com/Chaoyingz/flect

[473] 

docker-android:Docker 里的 Android,支持 noVNC 和视频录制: https://github.com/budtmo/docker-android

[474] 

anthropic-sdk-python:调用 Claude 3 等大模型: https://github.com/anthropics/anthropic-sdk-python

[475] 

PhotoMaker:制造逼真的人物照片: https://github.com/TencentARC/PhotoMaker

[476] 

metube:自托管的 YouTube 下载器(youtube-dl/yt-dlp 的 Web UI): https://github.com/alexta69/metube

[477] 

cachetools:可扩展的内存化集合和装饰器: https://github.com/tkem/cachetools

[478] 

speedtest-cli:使用 speedtest.net 测试网络带宽的命令行界面: https://github.com/sivel/speedtest-cli

[479] 

Open-Sora-Plan:旨在重现 Sora(Open AI T2V模型): https://github.com/PKU-YuanGroup/Open-Sora-Plan

[480] 

minisora:旨在探索 Sora 的实施路径和未来发展方向: https://github.com/mini-sora/minisora

[481] 

flet:用 Python 开发实时的 Web、移动端和桌面程序: https://github.com/flet-dev/flet

[482] 

ss-python:Python 项目模板,涵盖整个开发生命周期: https://github.com/serious-scaffold/ss-python

[483] 

dukpy:用于 Python 简化版 JavaScript 解释器: https://github.com/amol-/dukpy

[484] 

PyKidos:一个 Python 编程练习网站: https://pykidos.github.io/

[485] 

hatchet:分布式的容错的任务队列: https://github.com/hatchet-dev/hatchet

[486] 

full-stack-fastapi-template:全栈的现代 Web 项目模板: https://github.com/tiangolo/full-stack-fastapi-template

[487] 

bython:带花括号的 Python: https://github.com/mathialo/bython

[488] 

treq:构建在 Twisted 上的 HTTP 请求库: https://github.com/twisted/treq

[489] 

JavSP:汇总多站点数据的视频元数据刮削器: https://github.com/Yuukiy/JavSP

[490] 

botasaurus:强大的网络爬虫框架: https://github.com/omkarcloud/botasaurus

[491] 

pywebview:用 JavaScript、HTML 和 CSS 构建 GUI: https://github.com/r0x0r/pywebview

[492] 

Paper-Piano:在白纸上弹钢琴: https://github.com/Mayuresh1611/Paper-Piano

[493] 

grok-1:马斯克开源的 Grok: https://github.com/xai-org/grok-1

[494] 

DarkGPT:基于 GPT-4-200K,查询泄露的数据库: https://github.com/luijait/DarkGPT

[495] 

structlog:简单、强大、快速的 Python 日志记录库: https://github.com/hynek/structlog

[496] 

pydumpling: 针对 Python 的异常调试器: https://github.com/cocolato/pydumpling

[497] 

can_ada:快速且符合规范的 URL 解析库: https://github.com/tktech/can_ada

[498] 

Mindgraph:使用 AI 生成和查询不断扩展的知识图谱: https://github.com/yoheinakajima/mindgraph

[499] 

speechbrain:基于 PyTorch 的语音工具包: https://github.com/speechbrain/speechbrain

[500] 

python-anyconfig:以通用 API 加载和转储各种格式的配置文件: https://github.com/ssato/python-anyconfig

[501] 

Llama-Chinese: Llama 中文社区,最好的中文 Llama 大模型: https://github.com/LlamaFamily/Llama-Chinese

[502] 

python-for-android:将 Python 程序变成 Android APK: https://github.com/kivy/python-for-android

[503] 

img2img-turbo:Stable Diffusion turbo 实现的 sketch2image、day2night 等: https://github.com/GaParmar/img2img-turbo

[504] 

ludic:用纯 Python 构建动态 HTML 页面的轻量级框架: https://github.com/paveldedik/ludic

[505] 

mojo:Mojo 编程语言开源了: https://github.com/modularml/mojo

[506] 

Suno-API:基于 Python 和 FastAPI 的非官方 Suno API: https://github.com/SunoAI-API/Suno-API

[507] 

blacken-docs:对文档中的 Python 代码块上运行“black”: https://github.com/adamchainz/blacken-docs

[508] 

pathvalidate:用于规范化/验证字符串,例如文件名和文件路径: https://github.com/thombashi/pathvalidate

[509] 

LunarLink: 基于HttpRunner + Django + Vue + Element UI 的接口自动化测试平台: https://github.com/tahitimoon/LunarLink

[510] 

leaping:轻量级的 Python 测试调试器: https://github.com/leapingio/leaping

[511] 

keepyourmouthshut:用 AI 能力录制播客: https://github.com/rajtilakjee/keepyourmouthshut

[512] 

MoneyPrinterTurbo:利用AI大模型,一键生成高清短视频: https://github.com/harry0703/MoneyPrinterTurbo

[513] 

AIOS:LLM 代理操作系统: https://github.com/agiresearch/AIOS

[514] 

LaVague:使用大行动模型框架实现自动化: https://github.com/lavague-ai/LaVague

[515] 

Gmeek:一个完全使用 Github 的博客框架: https://github.com/Meekdai/Gmeek

[516] 

posthog:提供开源产品分析、会话录制、功能标记和 A/B 测试: https://github.com/PostHog/posthog

[517] 

devika:Cognition AI 的 Devin 的开源替代品: https://github.com/stitionai/devika

[518] 

OpenDevin:Devin 的开源实现: https://github.com/OpenDevin/OpenDevin

[519] 

SWE-agent:可修复 Github 问题的 AI 软件工程师: https://github.com/princeton-nlp/SWE-agent

[520] 

openui:描述你想要的 UI,它实时帮你生成: https://github.com/wandb/openui

[521] 

ragflow:基于深度文档理解的开源 RAG 引擎: https://github.com/infiniflow/ragflow

[522] 

zibai:高性能的纯 Python WSGI 服务器: https://github.com/abersheeran/zibai

[523] 

podgenai:GPT-4 制作有声读物/播客 mp3 生成器: https://github.com/impredicative/podgenai

[524] 

qiling:真正可检测的二进制仿真框架: https://github.com/qilingframework/qiling

[525] 

maxtext:谷歌推出的简单、高性能及可扩展的 JaxLLM: https://github.com/google/maxtext

[526] 

nava:在 Python 中播放声音: https://github.com/openscilab/nava

[527] 

MuseV:无限长度和高保真的虚拟人视频生成: https://github.com/TMElyralab/MuseV

[528] 

restai:一个 AIaaS(AI 即服务)开源平台: https://github.com/apocas/restai

[529] 

open-interpreter:计算机上的自然语言界面: https://github.com/OpenInterpreter/open-interpreter

[530] 

narwhals:Polars、pandas、cuDF、Modin 的轻量级可扩展兼容层: https://github.com/MarcoGorelli/narwhals

[531] 

mantis:可自动发现、侦察和扫描漏洞的安全框架: https://github.com/PhonePe/mantis

[532] 

FreeAskInternet:免费私有且本地运行的搜索聚合器与答案生成: https://github.com/nashsu/FreeAskInternet

[533] 

PyCharm 博客总结的一系列 Django 学习资源: https://blog.jetbrains.com/pycharm/2024/04/django-learning-resources/

[534] 

great-tables:用 Python 生成信息丰富的精美表格 : https://github.com/posit-dev/great-tables

[535] 

jiaTansSSHAgent:实现 XZ sshd 某些后门功能: https://github.com/blasty/JiaTansSSHAgent

[536] 

docx2python:提取 docx 的页眉、页脚、文本、脚注、尾注、属性和图像: https://github.com/ShayHill/docx2python

[537] 

WechatMoments:微信朋友圈导出工具: https://github.com/tech-shrimp/WechatMoments

[538] 

low_cost_robot:超低成本实现机械臂: https://github.com/AlexanderKoch-Koch/low_cost_robot

[539] 

drawpyo:用 Python 生成 Draw.io 图表: https://github.com/MerrimanInd/drawpyo

[540] 

drawdb:免费直观的在线数据库设计工具和 SQL 生成器: https://github.com/drawdb-io/drawdb

[541] 

pylyzer:快速的 Python 静态代码分析器和语言服务器: https://github.com/mtshiba/pylyzer

[542] 

anthropic-cookbook:一些有趣而有效的使用 Claude 的方法: https://github.com/anthropics/anthropic-cookbook

[543] 

Flowmium:用 Rust 写的 Python 工作流编排器: https://github.com/RainingComputers/Flowmium

[544] 

github2file:从 Github 下载和处理文件: https://github.com/cognitivecomputations/github2file

[545] 

Python 知识备忘录: https://kieranholland.com/best-python-cheat-sheet/

[546] 

DouZero:通过自玩深度强化学习掌握斗地主: https://github.com/kwai/DouZero

[547] 

dashboard-icons:仪表板图标资源: https://github.com/walkxcode/dashboard-icons

[548] 

newspaper4k:从新闻网站提取文章、标题和元数据: https://github.com/AndyTheFactory/newspaper4k

[549] 

translateLocally:在本机上用 LLM 快速安全地翻译: https://github.com/XapaJIaMnu/translateLocally

[550] 

constable:将打印直接插入 AST 进行状态调试: https://github.com/saurabh0719/constable

[551] 

TextBlob:情感分析、词性标记、名词短语提取、翻译等: https://github.com/sloria/TextBlob

[552] 

wewe-rss:生成微信公众号 RSS,支持私有化部署: https://github.com/cooderl/wewe-rss

[553] 

llama3:Meta Llama 3 的官方仓库: https://github.com/meta-llama/llama3

[554] 

llama3-Chinese-chat:Llama3 中文仓库,各种聚合资料: https://github.com/CrazyBoyM/llama3-Chinese-chat

[555] 

reader:将 URL 转换为对 LLM 友好的文本: https://github.com/jina-ai/reader

[556] 

tasktiger:基于 Redis 的 Python 任务队列: https://github.com/closeio/tasktiger

[557] 

utt:用 Python 编写的简易命令行时间跟踪器: https://github.com/larose/utt

[558] 

simone:将 YouTube 视频转换为文章进行发布: https://github.com/rajtilakjee/simone

[559] 

h11:用纯 Python 实现的 HTTP/1.1 库: https://github.com/python-hyper/h11

[560] 

browser-hub:浏览器包装器,可运行多个浏览器实例: https://github.com/amirkarimi/browser-hub

[561] 

lingua-py:极准确的自然语言检测库: https://github.com/pemistahl/lingua-py

[562] 

photo-similarity-search:基于苹果芯片的照片相似度 Web 应用: https://github.com/harperreed/photo-similarity-search

[563] 

Windrecorder:记录屏幕内容,实现记忆搜索: https://github.com/yuka-friends/Windrecorder

[564] 

logfire:用于 Python 的可观测性工具: https://github.com/pydantic/logfire

[565] 

pyinfra:用 Python 实现基础设施自动化: https://github.com/pyinfra-dev/pyinfra

[566] 

pipxu:使用 UV 在隔离环境中安装和运行 Python 程序: https://github.com/bulletmark/pipxu

[567] 

tkforge:在 Figma 中拖放创建 Python GUI: https://github.com/Axorax/tkforge

[568] 

TagStudio:文件和照片管理系统: https://github.com/TagStudioDev/TagStudio

[569] 

coredumpy:保存崩溃的站点以作事后调试: https://github.com/gaogaotiantian/coredumpy

[570] 

plane:开源的 JIRA、Linear 和 Asana 替代品: https://github.com/makeplane/plane

[571] 

Scrapegraph-ai:基于 AI 的 Python 抓取工具: https://github.com/VinciGit00/Scrapegraph-ai

[572] 

tv:自动收集 IPv4 酒店电视直播源: https://github.com/ssili126/tv

[573] 

netprobe_lite:用 Python 开发的网络性能测试工具: https://github.com/plaintextpackets/netprobe_lite

[574] 

dangerzone:将有害的 PDF、office 文档或图像转换为安全的 PDF: https://github.com/freedomofpress/dangerzone

[575] 

MS-DOS:MS-DOS 1.25、2.0 和 4.0 的源代码: https://github.com/microsoft/MS-DOS

[576] 

pywinassistant:用自然语言控制 Windows 用户界面: https://github.com/a-real-ai/pywinassistant

[577] 

chinese-calendar:判断一天是不是法定节假日/工作日: https://github.com/LKI/chinese-calendar

[578] 

Oven:探索 Python PyPI 包: https://pyoven.org/

[579] 

tetos:适用于多种 TTS 服务的统一接口: https://github.com/frostming/tetos

[580] 

relax-py:又一个 Python Web 框架: https://github.com/crpier/relax-py

[581] 

哈佛大学 2024 年 CS50 线上课程: https://cs50.harvard.edu/x/2024/

[582] 

portr:专为团队设计的开源的 ngrok 替代方案: https://github.com/amalshaji/portr

[583] 

py-compress-compare:对比分析 zlib、LZ4、Brotli 和 Zstandard: https://github.com/dhilipsiva/py-compress-compare

[584] 

pyspread:用 Python 开发的电子表格,可支持 Python 代码: https://pyspread.gitlab.io/

[585] 

PgQueuer:基于 PostgreSQL 的任务队列库: https://github.com/janbjorge/PgQueuer

[586] 

你用人工智能做过的最实用的事情是什么?: https://www.reddit.com/r/ArtificialInteligence/comments/1ceaftk/whats_the_most_practical_thing_you_have_done_with/

[587] 

The-Python-Graph-Gallery:数百个用 Python 绘制的图表: https://github.com/holtzy/The-Python-Graph-Gallery

[588] 

parler-tts:高质量的 TTS 模型: https://github.com/huggingface/parler-tts

[589] 

UXsim:道路上的车辆交通流模拟器: https://github.com/toruseo/UXsim

[590] 

Quads:基于四叉树的计算机艺术: https://github.com/fogleman/Quads

[591] 

bilibot:用哔哩哔哩用户评论微调的本地聊天机器人: https://github.com/linyiLYi/bilibot

[592] 

pyaction:带有 Python、git 和 Github CLI 的 Docker 容器: https://github.com/cicirello/pyaction

[593] 

firecrawl:将整个网站变成 LLM-ready 的 markdown: https://github.com/mendableai/firecrawl

[594] 

plotille:使用盲文点在终端中绘图: https://github.com/tammoippen/plotille

[595] 

petl:Python 提取、转换和加载数据表: https://github.com/petl-developers/petl

[596] 

FunClip:视频语音识别和剪辑工具,集成 AI 剪辑功能: https://github.com/alibaba-damo-academy/FunClip

[597] 

map-machine:OpenStreetMap 的 Python 渲染器: https://github.com/enzet/map-machine

[598] 

IC-Light:给图片加上打光照明: https://github.com/lllyasviel/IC-Light

[599] 

用于处理 Excel 的 Python 资源: https://www.python-excel.org/

[600] 

yen:Python 虚拟环境管理工具,无需预装 Python: https://github.com/tusharsadhwani/yen

[601] 

Tensor-Puzzles:21 个张量谜题: https://github.com/srush/Tensor-Puzzles

[602] 

dishka:依赖注入框架: https://github.com/reagento/dishka

[603] 

hstream:将 Python 脚本转换为 Web 应用: https://github.com/conradbez/hstream

[604] 

cover-agent:AI 自动生成测试,提升代码覆盖率: https://github.com/Codium-ai/cover-agent

[605] 

pygments:用 Python 开发的通用型语法高亮工具: https://github.com/pygments/pygments

[606] 

hashquery:在数据仓库中定义和查询 BI 模型: https://github.com/hashboard-hq/hashquery

[607] 

Python 有哪些指标监测库?: https://news.ycombinator.com/item?id=40104427

[608] 

stamina:可用于生产的 Python 重试库: https://github.com/hynek/stamina

[609] 

piku:支持对自己的服务器作 git 推送部署: https://github.com/piku/piku

[610] 

mql:用自然语言输入生成 SQL 查询: https://github.com/shurutech/mql

[611] 

llama-fs:基于 llama 3 的自组织文件系统: https://github.com/iyaja/llama-fs

[612] 

orjson:快速准确的 JSON 库,支持数据类、日期时间和 Numpy: https://github.com/ijl/orjson

[613] 

asyncssh:在 asyncio 上提供 SSHv2 协议的异步客户端和服务器: https://github.com/ronf/asyncssh

[614] 

ipyblender-experimental:Jupyter 中引入 Blender: https://github.com/kolibril13/ipyblender-experimental

[615] 

searxng:免费的互联网元搜索引擎,汇总各种搜索服务和数据库的结果: https://github.com/searxng/searxng

[616] 

rio:纯 Python 的 Web 开发框架,无需 JavaScript、HTML 和 CSS: https://github.com/rio-labs/rio

[617] 

buku:个人的文本迷你网络: https://github.com/jarun/buku

[618] 

resume-builder:纯 Python 开发的简历生成工具: https://github.com/koek67/resume-builder

[619] 

more-itertools:比 itertools 丰富的可迭代对象操作: https://github.com/more-itertools/more-itertools

[620] 

tach:强制实施模块化、解耦的包架构: https://github.com/gauge-sh/tach

[621] 

Zango:构建企业级应用/微服务的 Python Web 框架: https://github.com/Healthlane-Technologies/Zango

[622] 

pdm:支持最新 PEP 标准的 Python 包和依赖项管理工具: https://github.com/pdm-project/pdm

[623] 

Think Python 第三版(免费在线)—Think Python, 3rd edition: https://allendowney.github.io/ThinkPython/

[624] 

关于音乐处理的 Python 基础笔记: https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html

[625] 

ChatTTS:用于日常对话的生成语音模型: https://github.com/2noise/ChatTTS

[626] 

几个与 ChatTTS 相关的项目: https://xiaobot.net/p/python_weekly

[627] 

koheesio:构建高效数据管道的 Python 框架: https://github.com/Nike-Inc/koheesio

[628] 

groqbook:使用 Groq 和 Llama3 在几秒内生成整本书: https://github.com/Bklieger/groqbook

[629] 

cachebox:用 Rust 开发的高性能 Python 缓存库: https://github.com/awolverp/cachebox

[630] 

mesop:Google 开源基于 Python 的 UI 框架: https://github.com/google/mesop

[631] 

Qwen2:阿里云开源的大模型系列: https://github.com/QwenLM/Qwen2

[632] 

RSS-Translator:简洁可自部署的 RSS 翻译器: https://github.com/rss-translator/RSS-Translator

[633] 

farfalle:AI 搜索引擎, 用本地或云 LLM 自托管: https://github.com/rashadphz/farfalle

[634] 

chsrc:全平台命令行换源工具: https://github.com/RubyMetric/chsrc

[635] 

WeasyPrint:非常棒的工具,将 Web 生成 PDF 文档: https://github.com/Kozea/WeasyPrint

[636] 

oxo:现代的安全扫描编排器: https://github.com/Ostorlab/oxo

[637] 

jupyterlab-desktop:JupyterLab 桌面版,基于 Electron: https://github.com/jupyterlab/jupyterlab-desktop

[638] 

teo:模式驱动的 Web 服务端框架: https://github.com/teodevgroup/teo

[639] 

aiosql:Python 中的简单 SQL: https://github.com/nackjicholson/aiosql

[640] 

thread:AI 驱动的 Python 笔记本,使用 React 构建: https://github.com/squaredtechnologies/thread

[641] 

OpenRecall:Windows Recall 的开源替代: https://github.com/openrecall/openrecall

[642] 

requests-futures:使用 Futures 实现的异步 Python HTTP Requests: https://github.com/ross/requests-futures

[643] 

websocket-client:Python 的 WebSocket 客户端: https://github.com/websocket-client/websocket-client

[644] 

Freeway:WiFi 渗透测试与审计工具: https://github.com/FLOCK4H/Freeway

[645] 

cibuildwheel:以最少的配置为所有平台构建 Python wheel: https://github.com/pypa/cibuildwheel

[646] 

超过 6000 份免费的速查表: https://cheatography.com/

[647] 

pdf-to-podcast:将任何 PDF 转换为播客节目: https://github.com/knowsuchagency/pdf-to-podcast

[648] 

prettypretty:漂亮的终端颜色库: https://github.com/apparebit/prettypretty

[649] 

django-render:使用 Django 和 React 构建用户友好的应用: https://github.com/kaedroho/django-render

[650] 

holmesgpt:GPT 支持的 DevOps 助手: https://github.com/robusta-dev/holmesgpt/

[651] 

labelme:用 Python 作图像多边形标注: https://github.com/labelmeai/labelme

[652] 

aurora:Python 实现的快速、可扩展的静态站点生成器: https://github.com/capjamesg/aurora

[653] 

httpstat:使 CURL 统计变得简单: https://github.com/reorx/httpstat

[654] 

writer-framework:用于创建 AI 应用的全栈框架: https://github.com/writer/writer-framework

[655] 

surya:OCR、布局分析、顺序读取、90+ 种语言的行检测: https://github.com/VikParuchuri/surya

[656] 

MiniCPM-Llama3-V 2.5:手机上媲美 GPT-4V 的多模态 LLM: https://github.com/OpenBMB/MiniCPM-V

[657] 

pyod:用于异常值检测 Python 库: https://github.com/yzhao062/pyod

[658] 

warp:用于高性能 GPU 仿真和图形的 Python 框架: https://github.com/NVIDIA/warp

[659] 

Your-Journey-To-Fluent-Python:你的流畅的 Python 之旅: https://github.com/pro1code1hack/Your-Journey-To-Fluent-Python

[660] 

llm:从命令行访问大语言模型: https://github.com/simonw/llm

[661] 

lmdocs:使用 LLM 生成 Python 项目的帮助文档: https://github.com/MananSoni42/lmdocs

[662] 

make-python-devex:使用 Make、Homebrew、pyenv、poetry 等工具的示例: https://github.com/target/make-python-devex

[663] 

vulture:查找无效的 Python 代码: https://github.com/jendrikseipp/vulture

[664] 

CleanMyWechat: 自动删除 PC 端微信缓存数据: https://github.com/blackboxo/CleanMyWechat

[665] 

wxauto:Windows 版微信自动化,可发送/接收消息,简单微信机器人: https://github.com/cluic/wxauto

[666] 

youdaonote-pull:一键导出/备份有道云笔记的所有笔记: https://github.com/DeppWang/youdaonote-pull

[667] 

reladiff:跨数据库对大型数据集作高性能比对: https://github.com/erezsh/reladiff

[668] 

hrms:开源人力资源和薪资管理软件: https://github.com/frappe/hrms

[669] 

burr:构建能够做出决策的应用(聊天机器人、代理、仿真等): https://github.com/DAGWorks-Inc/burr

[670] 

thread:AI 驱动的 Jupyter Notebook: https://github.com/squaredtechnologies/thread

[671] 

graphrag:基于图形的模块化 RAG 系统: https://github.com/microsoft/graphrag

[672] 

puepy:基于 PyScript 的 Python+Webassembly 前端框架: https://github.com/kkinder/puepy

[673] 

psqlpy:Rust 写的异步 Python PostgreSQL 驱动: https://github.com/qaspen-python/psqlpy

[674] 

pretzelai:Jupyter Notebook 们的现代替代品: https://github.com/pretzelai/pretzelai

[675] 

meet-libai:  构建李白知识图谱,训练 AI 李白智能体: https://github.com/BinNong/meet-libai

[676] 

flpc:Rust 开发的 Python 正则表达式库: https://github.com/itsmeadarsh2008/flpc

[677] 

Taiwan-LLM:台湾繁体中文 LLM: https://github.com/MiuLab/Taiwan-LLM

[678] 

ttkbootstrap:tkinter 的增强主题,受 Bootstrap 启发的现代平面风格: https://github.com/israel-dryer/ttkbootstrap

[679] 

bunkerweb:开源的 Web 应用防火墙(WAF): https://github.com/bunkerity/bunkerweb

[680] 

AI-Math-Notes:交互式的 AI 数学黑板: https://github.com/ayushpai/AI-Math-Notes

[681] 

cookiecutter-django:快速启动生产就绪的 Django 项目: https://github.com/cookiecutter/cookiecutter-django

[682] 

Linly-Talker:数字化身系统,结合大语言模型与视觉模型: https://github.com/Kedreamix/Linly-Talker

[683] 

dnstwist:检测域名的钓鱼攻击、拼写错误抢注和品牌冒充: https://github.com/elceef/dnstwist

[684] 

posting:位于终端里的现代 API 客户端: https://github.com/darrenburns/posting

[685] 

filesystem_spec:Python 文件系统应遵守的规范: https://github.com/fsspec/filesystem_spec

[686] 

babel:Python 国际化库: https://github.com/python-babel/babel

[687] 

fastapi-docker-temp:基于 FastAPI 的最小化 Docker 项目模版: https://github.com/liseami/fastapi-docker-temp

[688] 

crawlee-python:Python Web 抓取和浏览器自动化库: https://github.com/apify/crawlee-python

[689] 

django-sql-explorer:通过 SQL 查询,在整个公司内轻松共享数据: https://github.com/explorerhq/django-sql-explorer

[690] 

pyxel:Python 的像素风游戏开发引擎: https://github.com/kitao/pyxel

[691] 

0xtools:分析 Linux 系统上应用的性能: https://github.com/tanelpoder/0xtools

[692] 

Secator:渗透测试人员的瑞士军刀: https://github.com/freelabz/secator

[693] 

rss2newsletter:将 RSS/Atom feed 转换为邮件通讯: https://github.com/ElliotKillick/rss2newsletter

[694] 

vectorlite:SQLite 的快速可调节的向量搜索扩展: https://github.com/1yefuwang1/vectorlite

[695] 

LivePortrait:让人像肖像栩栩如生: https://github.com/KwaiVGI/LivePortrait

[696] 

PSF 官宣一档播客节目:Python 的隐藏人物: https://pyfound.blogspot.com/2023/12/announcing-hidden-figures-of-python-pypodcats.html

[697] 

Talk Python To Me #442 使用 msgspec 作超高速的消息解析: https://talkpython.fm/episodes/show/442/ultra-high-speed-message-parsing-with-msgspec

[698] 

DjangoCon US 2023 的视频列表,60 个视频: https://www.youtube.com/playlist?list=PL2NFhrDSOxgX41jqYSi0HmO9Wsf6WDSmf

[699] 

PyConChina 2023 的演讲视频: https://space.bilibili.com/474764697/video

[700] 

Episode #184:PyCoder's Weekly 的 2023 年总结: https://realpython.com/podcasts/rpp/184/

[701] 

Requests vs Httpx vs Aiohttp 该选哪一个呢?: https://www.youtube.com/watch?v=OPyoXx0yA0I

[702] 

为什么 Python, Go, Rust, Kotlin 没有三元运算符?: https://www.bilibili.com/video/BV1v64y1J7hS

[703] 

捕蛇者说 Ep 44. 与 Tualatrix 聊聊独立开发使用的技术栈: https://www.xiaoyuzhoufm.com/episode/65945c8c1e736aa25c935885

[704] 

给 Pythonistas 的 Rust 编程入门教程: https://www.youtube.com/watch?v=MoqtsYLGCC4

[705] 

Meta 喜欢 Python: https://engineering.fb.com/2024/02/12/developer-tools/meta-loves-python/

[706] 

Talk Python To Me #449:使用 FastUI 构建 UI: https://talkpython.fm/episodes/show/449/building-uis-in-python-with-fastui

[707] 

带大家感受一下没有 GIL 的 CPython: https://www.bilibili.com/video/BV1im411R7UB

[708] 

ruff、uv 和 Astral:Python 工具链,使用 Rust 提速: https://podcast.pythontest.com/episodes/ruff-astral-uv-charlie-marsh

[709] 

使用 Nextjs、Tailwind 和 Django 克隆一个全栈的 Airbnb: https://www.youtube.com/playlist?list=PLpyspNLjzwBnP-906FBRP5qzB4YXjMvnT

[710] 

Django Brew:一档新的 Python 播客: https://djangobrew.com/episodes/14650534-episode-1-fried-green-introverts

[711] 

使用 Django、Channels 和 HTMX  克隆一个流式 ChatGPT: https://www.youtube.com/watch?v=8JSiiPW4S0A

[712] 

2024 年学习数据科学的系列视频: https://www.youtube.com/playlist?list=PLTsu3dft3CWiow7L7WrCd27ohlra_5PGH

[713] 

2024 年菲律宾 PyCon 演讲视频列表: https://www.youtube.com/playlist?list=PLCBCxsuKTqkDBFLU2tWQvB645sNtedQbb

[714] 

2024 年构建大语言模型的小指南: https://www.youtube.com/watch?v=2-SPH9hIKT8

[715] 

2023 年的 800 多期 Python 演讲视频: https://docs.google.com/spreadsheets/d/14zNPyGNMDt7ejEHM6c8WpK4hfbmPJmbP1e4N3vM87A8

[716] 

教程:使用 Python + HTMX + Tailwind 作 Web 开发: https://www.youtube.com/watch?v=YUoflPpVLjQ

[717] 

core.py: http://core.py/

[718] 

Ep 10:开发者聊 Python 3.13 的 REPL: https://podcasters.spotify.com/pod/show/corepy/episodes/Episode-10-The-Interactive-REPL-e2j788i/a-ab7uiak

[719] 

The Python Show 40 - 与 Antonio Cuni 一起聊开源开发: https://www.pythonshow.com/p/40-open-source-development-with-antonio

[720] 

你最喜欢的有关 Python 的 YouTube 频道是什么?: https://www.reddit.com/r/learnpython/comments/1cyeyp8/what_is_your_favorite_pythonrelated_youtube/

[721] 

PyCon 2024 现场录制的播客: https://podcasters.spotify.com/pod/show/corepy/episodes/Episode-11-Live-from-PyCon-2024-e2k75mc

[722] 

图灵奖得主巡礼系列播客,已更新 15 期: https://liuyandong.com/archives/category/podcast

[723] 

PyCon US 2024 演讲视频列表: https://www.youtube.com/playlist?list=PL2Uw4_HvXqvYhjub9bw4uDAmNtprgAvlJ

[724] 

PyCon Sweden 2024 演讲视频: https://www.youtube.com/@PyConSweden/videos

[725] 

为什么 Python 会有.venv 虚拟环境的概念?: https://www.v2ex.com/t/1007645

[726] 

Java 如何调用含有第三方依赖的 Python 项目?: https://www.v2ex.com/t/1003544

[727] 

Python on Mobile: State of the Union: https://pyfound.blogspot.com/2023/05/the-python-language-summit-2023-python.html

[728] 

为什么我不推荐写所谓的 main 函数?: https://pythoncat.top/posts/2020-06-03-main

[729] 

“降临节日历”系列文章: https://www.b-list.org/weblog/

[730] 

faster-whisper:使用 CTranslate2 作更快的 Whisper 转录: https://github.com/SYSTRAN/faster-whisper

[731] 

Reclaiming the Web with a Personal Reader: https://olano.dev/2023-12-12-reclaiming-the-web-with-a-personal-reader/

[732] 

Flask 已死,FastAPI 永生: https://greyli.com/flask-fastapi-2023/

[733] 

理性参与讨论《Flask 已死,FastAPI 永生》: https://zhuanlan.zhihu.com/p/673847164

[734] 

数据兔子洞:爱丽丝从 Pandas 到 DuckDB 仙境的冒险: https://dev.to/proteusiq/down-the-data-rabbit-hole-alices-adventure-from-pandas-to-duckdb-wonderland-25h0

[735] 

PEP-3141--数字的类型层级: https://github.com/chinesehuazhou/peps-cn/blob/master/StandardsTrack/3141--%E6%95%B0%E5%AD%97%E7%9A%84%E7%B1%BB%E5%9E%8B%E5%B1%82%E7%BA%A7.md

[736] 

ByteTalk 3. 跟图拉鼎聊聊独立开发者的那些事: https://www.xiaoyuzhoufm.com/episode/618c9897fad86a854205b2a0

[737] 

Fortran 社区的讨论: https://fortran-lang.discourse.group/t/the-counter-intuitive-rise-of-python-in-scientific-computing/469

[738] 

Polars 实用教程: https://pbpython.com/polars-intro.html

[739] 

用 SQL 求解魔方: https://explainextended.com/2022/12/31/happy-new-year-14/

[740] 

用 SQL 实现量子计算机模拟器: https://explainextended.com/2021/12/31/happy-new-year-13/

[741] 

Python uv 中文翻译: https://pythoncat.top/posts/2024-03-05-uv

[742] 

Rye: a Hassle-Free Python Experience: https://www.youtube.com/watch?v=q99TYA7LnuA

[743] 

Rye Grows With UV: https://lucumr.pocoo.org/2024/2/15/rye-grows-with-uv/

[744] 

Python 及很多项目的 EOL 时间: https://endoflife.date/python

[745] 

谷歌、微软、Meta?谁才是 Python 最大的金主?: https://pythoncat.top/posts/2022-11-21-sponsors

[746] 

tox 教程: https://pythoncat.top/posts/2020-01-06-tox

[747] 

将指针的地狱引入 Python: https://github.com/ZeroIntensity/pointers.py

[748] 

uv - Python 包的下一次演变?: https://talkpython.fm/episodes/show/453/uv-the-next-evolution-in-python-packages

[749] 

suno 逆向工程 API: https://github.com/yihong0618/SunoSongsCreator

[750] 

Python 之父为什么嫌弃 lambda 匿名函数?: https://pythoncat.top/posts/2020-09-20-lambda

[751] 

Google 内部专注于代码质量的“Code Health”系列: https://testing.googleblog.com/2024/03/whats-in-name.html

[752] 

RSS 预览美化: https://pythoncat.top/rss.xml

[753] 

开发编程语言的十年: https://yorickpeterse.com/articles/a-decade-of-developing-a-programming-language/

[754] 

通过 for 循环,比较 Python 与 Ruby 编程思想的差别: https://pythoncat.top/posts/2021-11-23-ruby

[755] 

编程语言的四种错误处理方法: https://pythoncat.top/posts/2023-05-08-error

[756] 

两种风格的错误处理: https://frostming.com/error-handling/

[757] 

将 Python 错误作为值:比较 Go 和 Rust 的使用模式: https://www.inngest.com/blog/python-errors-as-values

[758] 

Python 为什么不用分号作终止符?: https://pythoncat.top/posts/2020-05-27-semicolons

[759] 

h2:HTTP/2 协议栈的纯 Python 实现: https://github.com/python-hyper/h2

[760] 

Tkinter-Designer: https://github.com/ParthJadhav/Tkinter-Designer

[761] 

使用 Python + HTMX + Tailwind 作 Web 开发: https://pythonbynight.com/talks/web-development-python-backed-frontend-featuring-htmx-tailwind

[762] 

What's New In Python 3.13: https://docs.python.org/zh-cn/3.13/whatsnew/3.13.html

[763] 

翻译:ython Asyncio 工作原理:从零实现一个简化版 Asyncio: https://juejin.cn/post/7366945260792447014

[764] 

chinese-calendar: https://github.com/overtrue/chinese-calendar

[765] 

对比最流行的 6 个 Python 日志记录库: https://betterstack.com/community/guides/logging/best-python-logging-libraries/

[766] 

提名高天为 Python 核心开发者: https://discuss.python.org/t/vote-to-promote-tian-gao/53895

[767] 

Python 中 -m 的典型用法、原理解析与发展演变: https://pythoncat.top/posts/2019-11-10-m

[768] 

Python 已经支持中文变量名啦!: https://pythoncat.top/posts/2021-01-13-books

[769] 

NumPy 2.0.0 Release Notes: https://github.com/numpy/numpy/releases/tag/v2.0.0

[770] 

Polars vs. pandas:有什么区别?: https://blog.jetbrains.com/pycharm/2024/07/polars-vs-pandas/

[771] 

Python 论坛的详细讨论: https://discuss.python.org/t/handling-incompatibilities-with-app-store-review-processes/56011/1

[772] 

翻译:Python 的包管理工具真是多啊: https://juejin.cn/post/7389651690306338857

[773] 

如何上手最新的 CPython JIT?: https://jeff.glass/post/try-cpython-jit/

如果你正在寻找优质的Python文章和项目,我必须向你推荐🎁Python潮流周刊🎁!

它精选全网的优秀文章、教程、开源项目、软件工具、播客、视频、热门话题等丰富内容,让你紧跟技术最前沿,获取最新的第一手学习资料!

欢迎点击下方图片,了解这份全世界知识密度最高、知识广度最大的 Python 技术周刊。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值