△△请给“Python猫”加星标 ,以免错过文章推送
你好,我是豌豆花下猫。
Python 潮流周刊第 2 季(31-60期)在 2024.07.16 已完结,第 3 季(61-90期)在 2025.02.23 已完结。
在周刊即将更新到第 100 期之际,我将第 2 季内容整理成一份简化版,分享给大家。
本文总计约 800 个链接,有 5 大分类,你可以快速浏览文章、项目、播客、视频和话题讨论的标题,快速找到自己感兴趣的内容进行查看。
Python 周刊的精美电子书 EPUB、PDF 及 Markdown 版本,请在公zh号“Python猫”里发送“W30”,获取免费下载链接
提醒:近期续订或新订阅,领券可享受八折优惠,欢迎领取优惠券 --> https://www.xiaobot.net/coupon/d2c69b05-91b8-4e2b-b346-e7bc4dbc141a
🦄文章&教程
1、PEP-738:将 Android 添加为第 3 层支持的平台[1]
2、深度解析 Marker:AI 驱动的 PDF 布局检测引擎的源码解读[2]
3、现实世界的 match/case[3]
4、pytest 守护进程:提升 10 倍本地测试迭代速度[4]
5、使用 Python 88 行代码写一个简易的 Android AI 程序[5]
6、在 Python 中不需要这些无谓的操作[6]
7、为什么要用“if TYPE_CHECKING”?[7]
8、对比 SQLALchemy 与 Django ORM[8]
9、Python __init__.py 的最佳实践[9]
10、Mojo:来自一位 Python 研究员的观点[10]
11、Python 中的简单 HTTP 状态码[11]
12、CPython 开发实战:实现 None 感知运算符 ?. 和 ??[12]
13、代码的运行多于被阅读[13]
14、在并行程序中实际最多能用多少个 CPU?[14]
15、你的 Python 包都装到哪了?[15]
16、移除 CPython 中的私有 C API 函数[16]
17、Python 小陷阱:复制列表时的问题[17]
18、取消 Asyncio 任务的最佳实践[18]
19、Python 项目中的配置:没有魔法,只是必要的实践[19]
20、优化 Python 的 Flask、Django 和 FastAPI 程序[20]
21、为什么 Python、Go 和 Rust 都不支持三元运算符?[21]
22、Python 中的“key”参数的关键[22]
23、从 Python 数据类中消除状态突变方法[23]
24、Flask 已死,FastAPI 是未来[24]
25、Python + Flask 打造属于自己的 RSS 安全信息流[25]
26、Microdot:又一个 Python Web 框架[26]
27、周末 AI 项目:在 2004 年的诺基亚 9500 上运行 7B 大型语言模型[27]
28、Python Asyncio 之常见的三个坑[28]
29、Bash、Lua、Python 和 Rust 的梦幻岛冒险[29]
30、YAML、Python 和 Holy Graal[30]
31、“Python -m”:最酷的 Python 标记,真的值得更多关注[31]
32、Python CI 的初学者指南[32]
33、Python Type Hints 简明教程(基于 Python 3.12)[33]
34、Pyinstaller EXE 被检测为病毒?解决方案和替代方案[34]
35、Fontimize 简介|精确字体子集,仅使用你网站的字符[35]
36、GH-113464:copy-and-patch 的 JIT 编译器[36]
37、消失的隐喻:Zip 和 Paste[37]
38、40 亿个 IF 语句[38]
39、简单聊聊 Python 3.13 的 JIT 方案[39]
40、在 Python 中读取 Excel 的最快方法[40]
41、Flask 教程:从头开始构建可扩展的 Web 项目[41]
42、Python、C、汇编 - 提高 2500 倍余弦相似度运算[42]
43、使用 AI 检测 AI 生成的照片[43]
44、Python 内置函数 max 有毛病[44]
45、App 自动化测试之 Appium 应用篇| Appium 常用 API 及操作[45]
46、使用 Django 构建一个实时消息应用[46]
47、了解 Python 中的数值数据类型[47]
48、非阻塞的 Asyncio 日志记录[48]
49、Instagram 如何仅凭 3 名工程师实现用户规模 1400 万[49]
50、Google 设计的类 Python 编程语言 Starlark[50]
51、数据工程的历史和现状[51]
52、Python 3.13 也有了 JIT 编译器[52]
53、NumPy 2 即将推出:防止破坏,更新你的代码[53]
54、Python 反直觉地在科学计算中兴起[54]
55、在 Pandas 中实现快速高效的不等价连接[55]
56、Pandas Profiling:详细介绍它的使用[56]
57、深入了解 Python 的 functools.wraps 装饰器[57]
58、纯 Python 实现的 SIMD[58]
59、保护 Flask 程序的最佳实践[59]
60、使用服务器发送事件 (SSE) 将实时更新推送到客户端[60]
61、开发用 AI 驱动的 TODO 应用[61]
62、PEP-736 调用时关键字参数的简写语法[62]
63、如何用 Python 删除图像中的背景?[63]
64、一年后的 Python 打包:回顾 2023 年 Python 的打包[64]
65、PyCon 2023(美国和澳大利亚)所有演讲视频[65]
66、Python 的 Synchronized[66]
67、更快的 Python C 扩展的类型信息[67]
68、通过示例比较 Kotlin 和 Python 中的协程[68]
69、Pydantic 处理 1970 年代时间的奇特问题[69]
70、浏览器上的代码游乐场[70]
71、SQLite 的“database is locked”错误[71]
72、数据处理神器可不止 Pandas 哦,还有 Polars,全方位解析 Polars[72]
73、用 Python 函数构建 HTML 组件[73]
74、500 行 SQL 实现一个 GPT[74]
75、Python 装饰器的 3 个真实案例[75]
76、这不是面试建议:Python 不用堆和树实现按优先级过期的 LRU 缓存[76]
77、[Python dict() 和 {} 的性能分析](https://madebyme.today/blog/python-dict-vs-curly-brackets/ "Python dict( "Python dict() 和 {} 的性能分析") 和 {} 的性能分析")
78、增强 Markdown 语言以实现出色的 Python 图形界面[77]
79、7 个 Python 内存优化技巧[78]
80、Python 中的垃圾回收:你需要知道的事情[79]
81、Postgres 与 DynamoDB:该选择哪个数据库?[80]
82、使用 Streamlit 在 Python 中创建仪表板[81]
83、scrapscript.py 编程语言的实现过程[82]
84、Python Cryptography 已支持 X.509[83]
85、我对动态类型感到失望[84]
86、Python “令人失望”的超能力[85]
87、使用 Django、Django REST 和 Next.js 构建全栈项目[86]
88、使用 SQL、Node.js、Django 和 Next.js 构建仪表板项目[87]
89、用 Profila 分析你的 Numba 代码[88]
90、Python datetime 标准库的 10 个陷阱[89]
91、使用 Python 纠正语法的 4 种方法[90]
92、Python 调试技巧[91]
93、调试 Python 与 C 语言混合的项目[92]
94、分析“使用 Python 和 2MB RAM 对一百万个 32 位整数进行排序”[93]
95、使用 Python + Pylasu 实现语言解析器[94]
96、动态规划不是黑魔法[95]
97、什么时候应避免静态类型检查?[96]
98、实用指南:用 Python 运行开源的 LLM[97]
99、uv:Rust 开发的 Python 打包工具[98]
100、Rye:愿景延续[99]
101、为什么越来越多用 Rust 开发的库?[100]
102、80 行 Python 实现一个搜索引擎[101]
103、如何计算 Python 中的 CPU 指令数?[102]
104、Python 复用装饰器代码[103]
105、像专业人士一样处理 Asyncio 任务[104]
106、使用 textwrap 模块操作字符串[105]
107、总结 Python 版本间的主要变更点[106]
108、将 Postgres 作为队列使用[107]
109、我在所有 Django 项目中都用的 20 个包[108]
110、Python 元类的真实案例[109]
111、一万亿行气象数据的编程挑战[110]
112、白宫建议使用 Python 等内存安全语言[111]
113、回顾 Requests 库的问题[112]
114、Python 的 UV 工具确实相当不错[113]
115、Python 生成器未得到充分利用[114]
116、使用 Python 作高级 Web 抓取:从任意网站抓取数据[115]
117、Django REST 框架 + Vue 对比 Django + HTMX[116]
118、可组合数据系统之路:对过去 15 年和未来的思考[117]
119、用 Django 作 SQLite 基准测试[118]
120、Python 3.13 的 JIT 是如何实现的?[119]
121、Python 网页抓取的终极指南[120]
122、为简单架构作辩护[121]
123、关于“调度”的内部原理[122]
124、使用 Python 从头开始实现 RSA[123]
125、Python IAQ:不常见的问题[124]
126、为什么我喜欢 Nox?[125]
127、我最喜欢的数据结构:trie[126]
128、用 Python 处理 CSV 文件的速度能有多快?[127]
129、Django 项目的多语言支持[128]
130、Python 升级手册:Lyft 如何大规模升级 1500+ 代码仓[129]
131、将 Tailwind CSS 添加到 Django 的最简单方法[130]
132、初学者意想不到的 Python 陷阱[131]
133、使用 Python 和 Grafana 更好地冷却我的 PC[132]
134、使用搭载骁龙 8 Gen 3 的安卓手机运行 AI 大模型[133]
135、入行 14 年,我还是觉得编程很难[134]
138、介绍 Python 上下文管理器及其语法糖[135]
139、Python deque 使用教程[136]
140、Python 的泛型函数和泛型类[137]
141、Python Gevent 实践:常见的陷阱[138]
142、Python pickles 的安全问题[139]
143、构建开源去中心化的电子书搜索引擎[140]
144、Python import 跟 Java import 有什么区别?[141]
145、[PDM 的内部实现(1)](https://frostming.com/2024/pdm-lockfile/ "PDM 的内部实现(1 "PDM 的内部实现(1)")")
146、Python 中有指针吗?[142]
147、当 Python 无法线程化时:深入了解 GIL 的影响[143]
148、我的开源优先级转变了[144]
149、如何远程唤醒家里的电脑?[145]
150、Python 程序的内存占用情况[146]
151、正则表达式字符“\$”并不意味着“字符串末尾”[147]
152、介绍 Python 中所有的双下方法[148]
153、Python 多语言支持实现国际化与本地化的最佳实践[149]
154、在 Windows 上利用 Qwen 大模型搭建一个 ChatGPT 式的问答小助手[150]
155、[(如何(用Python)开发一个(Lisp)解释器)](https://www.norvig.com/lispy.html "(如何(用Python "(如何(用Python)开发一个(Lisp)解释器)")开发一个(Lisp)解释器)")
156、使用 Python 解析 URL[151]
157、Python 鸭子类型:编写灵活且解耦的代码[152]
158、用 Python 实现最小可用的 PostgreSQL[153]
159、给框架开发者的建议[154]
160、蒙特利尔效应:为什么编程语言需要有风格沙皇[155]
161、去中心化的边缘计算平台[156]
162、设计一个纯 Python Web 框架[157]
163、修复 PyPy 增量 GC 中的 一个 bug[158]
164、复活 PyMiniRacer,Python 中的 V8[159]
165、Python 与 Javascript 进行数据通信[160]
166、更适合慢函数调用的 Python 缓存实现[161]
167、使用 Collectfasta 加速 Django 的 collectstatic 命令[162]
168、用原生 Python 扩展和 Dispatch 实现分布式协程[163]
169、使用 Numba 加快代码速度的错误方法[164]
170、关于优化 Django 系统检查框架[165]
171、大数定律,为什么去赌场是个坏主意[166]
172、AutoDev:微软发布的自动化 AI 驱动开发框架[167]
173、我坚持用 Django 而不是 FastAPI 的 10 个原因[168]
174、Django 与 ASGI 服务器[169]
175、JSON 中的数字到底是什么?[170]
176、CPython 源码解析:为什么 Python 列表相乘的结果那么奇怪?[171]
177、Celery 源码分析系列[172]
178、我在 2024 年如何管理 Python[173]
179、使用 Pyodide 和 WebAssembly 将 Python 引入 Cloudflare Workers[174]
180、学习使用和不使用 AI 编码[175]
181、使用 Whisper、FFmpeg 和 Python 轻松转录视频并添加字幕[176]
182、如何用 GitHub Actions 自动执行数据爬取?[177]
183、使用断点调试 Python 代码[178]
184、Python “真正的”匿名函数[179]
185、如何用 Python 预测日食的时间和轨迹?[180]
186、我在开源软件上全职工作 503 天的经验分享[181]
187、修复 Python 代码坏味道的最佳实践[182]
188、如何用 Python 作质因式分解?[183]
189、Supervisor-持久化进程部署方案[184]
190、PEP-744 – 关于 JIT 编译[185]
191、Zapier 如何能自动执行数十亿个任务?[186]
192、Meta 使用单体架构仅 5 个月就发布了 Threads[187]
193、Python 命名约定:最佳实践和示例[188]
194、Great_Tables 的设计理念[189]
195、Python 为什么不能将列表作为字典的键?[190]
196、使用树莓派+Python+Influxdb 开发温度监测器[191]
197、如何用单行 Python 代码通过面试编码[192]
198、当你的老师希望你去做开源[193]
199、我每天在用的 Python f-string 代码[194]
200、用 Django 和 OpenAI 开发一款语音笔记应用[195]
201、Python Web 开发者的最佳安全实践[196]
202、Fedora 希望为其 Python 构建作“-O3”优化[197]
203、Ruff v0.4.0:一个手写的 Python 递归下降解析器[198]
204、给 Django RSS 源设置样式[199]
205、Python 中快捷的概率过滤器[200]
206、Code Review 时,曾被我忽视的 3 件重要小事[201]
207、用 Python 记录下今天敲了多少次键盘[202]
208、是否应该使用上界版本约束?[203]
209、如何开发一个代码格式化工具?[204]
210、公布 py2wasm:将 Python 程序转换为 Wasm[205]
211、对比 Ruby 与 Python 的 for 循环[206]
212、Python 小陷阱:strip、lstrip、rstrip 删除内容比预期的多[207]
213、用 Python 讲解进程间通信的核心机制[208]
214、PEP 745 – Python 3.14 的发布计划[209]
215、Python 不同数据结构的时间复杂度[210]
216、从第一性原理出发理解 Django[211]
217、Python 线程池的源码实现分析与相关问题探讨[212]
218、如何用 Python 设计和实现插件架构?[213]
219、浅谈 Python、Go、Rust 的异常处理[214]
220、mpmetrics 内存管理的设计[215]
221、编程语言中分号的起源和优点[216]
222、谷歌在开发者大会前裁员了 Python、Flutter 和 Dart 团队[217]
223、FastAPI 专家给出的 FastAPI 使用贴士[218]
224、PEP 686:将 UTF-8 模式设为默认配置[219]
225、Pydantic:简化 Python 中的数据验证[220]
226、中小型 Python 项目配置和数据读写的最佳实践[221]
227、为了乐趣和(并发的)收益而给 requests 库打补丁[222]
228、CPython JIT 内部原理:Python 启动时会发生什么?[223]
229、Sleepsort:在线程休眠时排序[224]
230、Python、JavaScript 和 Ruby 用莱布尼茨公式计算 π 的值[225]
231、10 年参加 Python 会议[226]
232、关于 for 循环的一些思考[227]
233、前 1% 精英工程师的 7 个简单的习惯[228]
234、我最喜欢的 Python 3.13 新特性[229]
235、Python 3.13 新功能盘点介绍[230]
236、Python Asyncio 工作原理:从零实现一个简化版 Asyncio[231]
237、友好的 Python:封装和复用[232]
238、零基础入门 Python 文件处理篇——实现一个简单的文件搜索引擎[233]
239、用 HTMX 和 Django 开发一个 Connect Four 游戏[234]
240、用 wxPython 开发一个简单的计算器[235]
241、学生在入门数据科学时常犯的错误[236]
242、使用“不安全的 Python”加速 Numpy 代码 100 倍[237]
243、Python 字典详细的历史演变过程[238]
244、重新发明 Python notebook 的经验教训[239]
245、Python 软件基金会新闻:2022 和 2023 资助计划的透明度报告[240]
246、引人注目的 Python Streamlit:精美的交互式地图和图表[241]
247、我絕不用 result 作為變數名稱[242]
248、Python 中使用 Loguru 记录日志[243]
249、35 道 Django 技术面试题[244]
250、Python 的集合是没有值的字典[245]
251、使用 Sliver 渗透测试套件的针对 Mac 的 PyPi 包后门[246]
252、为什么 TensorFlow 正在缓慢消亡?[247]
253、Python 中的延迟计算是什么?[248]
254、为什么要看 Python 源码?它的结构长什么样子?
255、2014 年我的 10 个业余项目[249]
256、无需数学公式,解释 LLM 的工作原理[250]
257、替代实现的问题[251]
258、正则表达式匹配可以很简单且高速[252]
259、如何利用内存中还在运行的代码,恢复已删除的源码?[253]
260、PEP-667:命名空间的一致视图[254]
261、用 100 行代码替换 pyinstaller[255]
262、py.space:免费开发在线的 Python 应用[256]
263、使用 Python 3.12 作静态类型函数式编程[257]
264、如何用 Python 动态生成 Github 个人主页 README?[258]
265、用 pyastgrep 作自定义 linting[259]
266、使用 pygments 生成代码片段的图片[260]
267、使用纯 NumPy 实现 Llama 3[261]
268、AI 帮你写的代码,所有权归谁?[262]
269、聪明的代码可能是你写过最糟糕的代码[263]
270、我「接见」了诺奖得主[264]
271、450 天成为 Python 核心开发者[265]
272、Python 如何比较浮点数和整数?[266]
273、JIT 和移除 GIL 都不是我最期待的 Python 3.13 特性[267]
274、从事 Python 打包工作 6 年的不为人知的故事[268]
275、庆祝 Beautiful Soup 的 20 周年[269]
276、曾经最喜欢 Ruby,现在可能是 Python[270]
277、使用 Postgres 的 Django 异步任务队列(不是 Kafka、Rabbit MQ、Celery 或 Redis)[271]
278、在 Streamlit 中支持异步 MongoDB 操作[272]
279、LangChain 实战:利用 LangChain SQL Agent 和 GPT 进行文档分析和交互[273]
280、pyo3_asyncio:Python Asyncio 事件循环的 Rust 绑定[274]
281、PyPy 已经悄悄地为我工作了好几年了[275]
282、许多实用的 Python 命令行程序[276]
283、我最喜欢教的编程问题:数字长度[277]
284、修复 Python 循环导入的一种方法[278]
285、PEP-789:限制异步生成器的 yield,防止任务取消错误[279]
286、我的 PyCon US 2024 回顾[280]
287、Python 开发游戏如何选择引擎?[281]
288、ChatTTS:语气韵律媲美真人的开源 TTS 模型[282]
289、使用特定的算法将运行速度提高 15×[283]
290、用 GPT-4o 生成 Flask 项目代码,能做到多好?[284]
291、用 Python 开发 Scrapscript 语言的编译器[285]
292、什么是 Python 的可哈希对象?[286]
293、用一道算法题比较 Python、Go、C++、C、AWK、Forth 和 Rust 的性能[287]
294、给 NumPy 2.0 实现更快速的字符串函数[288]
295、Python 中的 __pycache__ 文件夹是什么?[289]
296、CPython 垃圾回收:内部机制和实现算法[290]
297、从零开始搭建自己的相似图片搜索引擎[291]
298、使用 Pydantic Logfire 满足你的日志记录需求[292]
299、FastAPI 深度揭秘:高效 Web 开发指南[293]
300、通过用 Python 实现 HTTP 服务器来理解它[294]
301、我对“Excel 里的 Python”的看法[295]
302、用 Python 将卷曲文本的图像提取成 PDF[296]
303、Python Celery 的缺陷[297]
304、事件驱动的 Ansible,是什么、为什么以及如何使用?[298]
305、我国出版的 Python 教材几乎都有基本概念错误[299]
306、NumPy 2.0:一个重要的里程碑[300]
307、2024 年 Python 语言峰会:Python 该采用日历版本吗?[301]
308、2024 年 Python 语言峰会:我们应该让 pdb 变得更好吗?[302]
309、2024 年 Python 语言峰会:手机端上的 Python[303]
310、Python 项目管理入门[304]
311、在 Python 中连接字符串:一个“啊哈”时刻[305]
312、掌握上下文管理器,简化 Python 资源管理[306]
313、如何从Pandas 迁移到 Polars[307]
314、向 CPython 添加 JIT 编译器[308]
315、Debug 日志:CPython GH-120437[309]
316、使用 Rust 将 Python AST 的解析速度提高 20 倍[310]
317、Ruff:Rust 开发的 Python linter-formatter 的内部原理[311]
318、最快运行原型的语言[312]
319、PEP-2026 提议 Python 采用日历版本号[313]
320、优化 Python 的路由和调度:一个新的开源求解器 Timefold[314]
321、深入了解 Python 的集合数据结构[315]
322、使用 weakref 介绍 Python 的弱引用[316]
323、这就是软件开发现在的样子[317]
324、在命令行终端使用大语言模型[318]
325、如何将 Python 包发布到 PyPI?[319]
326、基本 Python 项目设置[320]
327、用 Make 提升 Python 开发者体验[321]
328、Notebooks 是代码中的麦当劳[322]
329、花了 6 个月时间开发 LiveAPI 代理,我得到的 10 个经验教训[323]
330、Polars 1.0 版本发布了!今后的计划?[324]
331、Python 努力应对 Apple App Store 的拒绝[325]
332、从 PDF 中提取数据的挑战,实用的 RAG 应用[326]
333、Python 中实现阶乘函数的十种方法[327]
334、Python 开发的最佳实践[328]
335、MicroPython 入门指南:(一)环境配置、Blink、部署[329]
336、Python 使用 .NET 开发的类库来提高你的程序执行效率[330]
337、我的 Python 代码是一种神经网络[331]
338、Python 稀疏数组生态系统概述[332]
339、犯罪分子冒充“乐于助人”的 Stack Overflow 用户推送恶意软件[333]
340、使用 Prettier 对 Django 或 Jinja 模板作格式化[334]
341、保持修改同步的两种方法:派生与测试[335]
342、Python 的包管理工具真是多啊[336]
343、用 Flask 和 HTMX 开发一个动态博客(第 1 篇)[337]
344、PySkyWiFi:利用航空公司漏洞,实现免费上网[338]
345、让 Python 失去随机性[339]
346、ChatGPT 沙盒中 Linux 系统的秘密[340]
347、我用 AI 自动将帽子戴到窗外的纽约人头上[341]
348、pip 与 uv:Streamlit Cloud 如何将程序加载时间缩短 55%?[342]
349、讲座:CPython JIT (Chipy 2024)幻灯片和参考链接[343]
350、Python 包命名的最佳实践[344]
351、系统调用的对决:Python 与 Ruby 的差异[345]
352、利用 GitHub Action 做爬虫,并将数据存在 SQLite 数据库中[346]
353、我从 35 年软件开发生涯中得到的 12 条经验教训[347]
354、写给 15 年前的自己的 10 条编程建议[348]
🐿️项目&资源
1、magic-animate:使用扩散模型的时间一致的人像动画[349]
2、phpy:连通 Python 和 PHP 的生态系统[350]
3、insanely-fast-whisper:快到极致的 Whisper[351]
4、coffee:使用 AI 将 UI 的构建和迭代速度提高 10 倍[352]
5、FastUI:更快构建更好的 UI[353]
6、mistral-src:Mistral AI 7B v0.1 模型的参考实现[354]
7、netchecks:查验网络运行条件的工具[355]
8、Pearl:Meta 推出的强化学习 AI 代理库[356]
9、gpt-fast:简单高效的 PyTorch 原生 Transformer 文本生成[357]
10、The-Grand-Complete-Data-Science-Materials:数据科学的视频和材料[358]
11、awesome-LLMs-In-China:中国的大模型[359]
12、msgspec:高性能的序列化和校验库[360]
13、feedi:打造个人的新闻聚合阅读器[361]
14、generative-ai-python:用 Google AI SDK,开发 Gemini 和 PaLM 应用[362]
15、python-guide-for-javascript-engineers:开源电子书《JavaScript工程师的Python指南》[363]
16、sqlmap:SQL 注入和渗透测试工具[364]
17、TikTokDownloader: TikTok 和抖音数据采集工具[365]
18、Osprey:通过视觉指导微调实现对像素的理解[366]
19、django-cast:基于 Django 和 Wagtail 的博客/播客项目[367]
20、Qexo:快速、强大且漂亮的 Hexo 编辑器[368]
21、project-based-learning:精选的基于项目的教程列表[369]
22、Amphion:用于音频、音乐和语音生成的工具包[370]
23、nicegui:使用 Python 开发 Web 用户界面[371]
24、csvkit:用于转换和处理 CSV 的命令行工具[372]
25、evue:基于 html/css 的高性能 GUI 框架[373]
26、JARVIS:自己的个人语音助手[374]
27、Gooey:只需一行即可将几乎任何 Python 命令行程序转换为完整的 GUI 程序[375]
28、mod:Mojo 的包管理器工具[376]
29、canopy:由 Pinecone 提供支持的 RAG 框架和上下文引擎[377]
30、toogether-backend:Django REST 社交约会 APP 项目[378]
31、DouyinLiveRecorder: 可循环值守和多人录制的直播录制软件[379]
32、StreamDiffusion:用于实时交互式生成的管道级解决方案[380]
33、sqlglot:SQL 解析器和转译器[381]
34、texify:输出 LaTeX 和 Markdown 的数学 OCR 模型[382]
35、talebook:一个简单的在线版个人书库[383]
36、watchfiles:简单快速的文件监听和代码重新加载[384]
37、hy:嵌入在 Python 中的 Lisp 方言[385]
38、pyapp:Python 应用的运行时安装器[386]
39、yarl:一个 URL 解析工具[387]
40、apispec:可插拔的 API 规范生成器,支持 OpenAPI 规范[388]
41、marshmallow:支持复杂对象与简单数据类型相互转换[389]
42、jake:在 GitHub 上轻松创建和部署自己的单链接网站[390]
43、docflow:功能强大的文档管理 API,无缝上传、下载、组织、版本控制、共享[391]
44、auto\_job\_\_find\_\_chatgpt\_\_rpa:基于 ChatGPT 的自动投简历助手[392]
45、oshit:放在命令行终端的 Hacker News[393]
46、mixtral-offloading:在 Colab 或个人电脑上运行 Mixtral-8x7B 模型[394]
47、RecoverPy:以交互方式从终端查找和恢复已删除或覆盖的文件[395]
48、MobileVLM:美团开源的移动设备视觉语言助手[396]
49、ydata-profiling:用于 Pandas 和 Spark DataFrame 的数据分析[397]
50、pdfsyntax:检查和修改 PDF 文件内部结构[398]
51、harlequin:终端里的 SQL IDE[399]
52、litellm:使用 OpenAI 格式调用所有 LLM API[400]
53、unstructured:用于 AI 模型的非结构化数据预处理工具[401]
54、chatgpt-on-wechat: 基于大模型搭建的聊天机器人,支持微信、企业微信、公众号、飞书[402]
55、whisperX:具有单词级时间戳的自动语音识别[403]
56、42 道在线的 Python 编程练习题[404]
57、mealie:自托管的食谱管理和膳食计划项目[405]
58、guardrails:给大语言模型添加护栏[406]
59、chainlit:在几分钟内构建 Python LLM 应用程序[407]
60、functime:用 Polars 构建的时间序列机器学习[408]
61、niquests:使用 HTTP/3、HTTP/2,支持异步的 requests[409]
62、slotscheck:确保你的\_\_slots\_\_正常工作[410]
63、panel:强大的数据探索和 Web 应用框架[411]
64、QAnything:基于任何东西的问答[412]
65、Bert-VITS2-ext: 基于 Bert-VITS2 做的表情、动画测试[413]
66、weread-exporter: 将微信读书中的书籍导出成 epub、pdf、mobi 等格式[414]
67、leetcode-solution:用 Python 解各种 LeetCode 问题[415]
68、CapsWriter-Offline: CapsWriter 离线版,好用的 PC 端语音输入工具[416]
69、surya:任何语言的准确行级文本检测和识别 (OCR)[417]
70、GPT-SoVITS:1分钟的语音也可训练一个好的 TTS 模型[418]
71、trt-llm-rag-windows:使用 TensorRTLLM 在 Windows 上创建 RAG 聊天机器人[419]
72、LangGPT:让每个人都能成为提示词专家[420]
73、core:可用于生产的 AI 助手框架[421]
74、van-gonography:将任意类型的文件隐藏在一张图像中[422]
75、mpmath:任意精度的浮点数运算[423]
76、sqlite-worker:在多线程应用中轻松管理 SQLite[424]
77、granian:用于 Python 程序的 Rust HTTP server[425]
78、fasthx:FastAPI + HTMX 开发框架[426]
79、ml-engineering:机器学习工程开源书籍[427]
80、sglang:专为大型语言模型设计的结构化生成语言[428]
81、chatgpt_telegram_bot:ChatGPT Telegram 机器人,无限制用 GPT-4 [429]
82、HuixiangDou:基于 LLM 的领域知识助手[430]
83、ComfyUI-InstantID:ComfyUI 的 InstantID 的非官方实现[431]
84、ComfyUI-PhotoMaker-ZHO:ComfyUI 的 PhotoMaker 的非官方实现[432]
85、excelCPU:用 Excel 实现的 16 位 CPU 和相关文件[433]
86、whenever:万无一失的 Python 日期时间[434]
87、DeepSeek-Coder:让代码自己编写[435]
88、fastcrud:FastAPI 的异步 CRUD 操作[436]
89、leptonai:简化 AI 服务构建的 Pythonic 框架[437]
90、gpt-newspaper:用 GPT 创建个性化报纸[438]
91、apprise:几乎适用于所有平台的通知推送[439]
92、procrastinate:基于 PostgreSQL 的 Python 任务队列[440]
93、flent:灵活的网络基准测试工具[441]
94、urllib3:新版本支持在浏览器发起 HTTP 请求[442]
95、gnuplotlib:基于 gnuplot 的 numpy 绘图后端[443]
96、history_rag:用 RAG 搭建中国历史问答应用[444]
97、uv:性能极快的 Python 包安装和解析器[445]
98、sqlite-web:基于 Web 的 SQLite 数据库工具[446]
99、celery-exporter:导出 Celery 指标用于 Prometheus[447]
100、pyupgrade:自动升级 Python 较新版本的语法 [448]
101、ollama-python: Ollama Python 库[449]
102、web2pdf:将网页转换为 PDF 的 CLI[450]
103、natural-sql:文本生成 SQL 的大语言模型[451]
104、rawdog:在 CLI 中自动生成并执行 Python 脚本[452]
105、UFO:基于 UI 与 Windows 系统交互的 AI 代理[453]
106、toolong:查看、跟踪、合并和搜索日志文件(以及 JSONL)的终端应用[454]
107、Owl:在本地运行的个人可穿戴 AI[455]
108、hyperdiv:用 Python 构建响应式 Web UI[456]
109、fabric:使用 AI 增强人类[457]
110、ingestr:用单个命令在任何数据库间无缝复制数据[458]
111、justpath:在 Windows 和 Linux 上检查和优化 PATH 环境变量[459]
112、mountaineer:用于 Python 和 React 的自带电池的 Web 框架[460]
113、generate:一个 API 访问国内外大模型平台[461]
114、StringZilla:将 C、C++、Python、Rust 和 Swift 的字符串速度提高 10 倍[462]
115、DrissionPage: 网页自动化工具,能控制浏览器,也能收发数据包[463]
116、Daft:Rust 开发的面向云的分布式 Python DataFrame[464]
117、magika:使用深度学习来检测文件内容的类型[465]
118、frappe:低代码 Web 框架,使用 Python 和 Javascript[466]
119、Umi-OCR: 开源、免费的离线 OCR 软件,支持截屏/批量导入图片[467]
120、xonsh:Python 开发的跨平台的类 Unix 的 shell[468]
121、umami-python:Python 开发的 Umami 分析客户端[469]
122、returns:让函数返回有意义、类型化且安全的内容[470]
123、pyquest:一系列的 Python 编程教程[471]
124、flect:用于构建全栈 Web 应用的 Python 框架[472]
125、docker-android:Docker 里的 Android,支持 noVNC 和视频录制[473]
126、anthropic-sdk-python:调用 Claude 3 等大模型[474]
127、PhotoMaker:制造逼真的人物照片[475]
128、metube:自托管的 YouTube 下载器(youtube-dl/yt-dlp 的 Web UI)[476]
129、cachetools:可扩展的内存化集合和装饰器[477]
130、speedtest-cli:使用 speedtest.net 测试网络带宽的命令行界面[478]
131、Open-Sora-Plan:旨在重现 Sora(Open AI T2V模型)[479]
132、minisora:旨在探索 Sora 的实施路径和未来发展方向[480]
133、flet:用 Python 开发实时的 Web、移动端和桌面程序[481]
134、ss-python:Python 项目模板,涵盖整个开发生命周期[482]
135、dukpy:用于 Python 简化版 JavaScript 解释器[483]
136、PyKidos:一个 Python 编程练习网站[484]
137、hatchet:分布式的容错的任务队列[485]
138、full-stack-fastapi-template:全栈的现代 Web 项目模板[486]
139、bython:带花括号的 Python[487]
140、treq:构建在 Twisted 上的 HTTP 请求库[488]
141、JavSP:汇总多站点数据的视频元数据刮削器[489]
142、botasaurus:强大的网络爬虫框架[490]
143、pywebview:用 JavaScript、HTML 和 CSS 构建 GUI[491]
144、Paper-Piano:在白纸上弹钢琴[492]
145、grok-1:马斯克开源的 Grok[493]
146、DarkGPT:基于 GPT-4-200K,查询泄露的数据库[494]
147、structlog:简单、强大、快速的 Python 日志记录库[495]
148、pydumpling: 针对 Python 的异常调试器[496]
149、can\_ada:快速且符合规范的 URL 解析库[497]
150、Mindgraph:使用 AI 生成和查询不断扩展的知识图谱[498]
151、speechbrain:基于 PyTorch 的语音工具包[499]
152、python-anyconfig:以通用 API 加载和转储各种格式的配置文件[500]
153、Llama-Chinese: Llama 中文社区,最好的中文 Llama 大模型[501]
154、python-for-android:将 Python 程序变成 Android APK[502]
155、img2img-turbo:Stable Diffusion turbo 实现的 sketch2image、day2night 等[503]
156、ludic:用纯 Python 构建动态 HTML 页面的轻量级框架[504]
157、mojo:Mojo 编程语言开源了[505]
158、Suno-API:基于 Python 和 FastAPI 的非官方 Suno API[506]
159、blacken-docs:对文档中的 Python 代码块上运行“black”[507]
160、pathvalidate:用于规范化/验证字符串,例如文件名和文件路径[508]
161、LunarLink: 基于HttpRunner + Django + Vue + Element UI 的接口自动化测试平台[509]
162、leaping:轻量级的 Python 测试调试器[510]
163、keepyourmouthshut:用 AI 能力录制播客[511]
164、MoneyPrinterTurbo:利用AI大模型,一键生成高清短视频[512]
165、AIOS:LLM 代理操作系统[513]
166、LaVague:使用大行动模型框架实现自动化[514]
167、Gmeek:一个完全使用 Github 的博客框架[515]
168、posthog:提供开源产品分析、会话录制、功能标记和 A/B 测试[516]
169、devika:Cognition AI 的 Devin 的开源替代品[517]
170、OpenDevin:Devin 的开源实现[518]
171、SWE-agent:可修复 Github 问题的 AI 软件工程师[519]
172、openui:描述你想要的 UI,它实时帮你生成[520]
173、ragflow:基于深度文档理解的开源 RAG 引擎[521]
174、zibai:高性能的纯 Python WSGI 服务器[522]
175、podgenai:GPT-4 制作有声读物/播客 mp3 生成器[523]
176、qiling:真正可检测的二进制仿真框架[524]
177、maxtext:谷歌推出的简单、高性能及可扩展的 JaxLLM[525]
178、nava:在 Python 中播放声音[526]
179、MuseV:无限长度和高保真的虚拟人视频生成[527]
180、restai:一个 AIaaS(AI 即服务)开源平台[528]
181、open-interpreter:计算机上的自然语言界面[529]
182、narwhals:Polars、pandas、cuDF、Modin 的轻量级可扩展兼容层[530]
183、mantis:可自动发现、侦察和扫描漏洞的安全框架[531]
184、FreeAskInternet:免费私有且本地运行的搜索聚合器与答案生成[532]
185、PyCharm 博客总结的一系列 Django 学习资源[533]
186、great-tables:用 Python 生成信息丰富的精美表格 [534]
187、jiaTansSSHAgent:实现 XZ sshd 某些后门功能[535]
188、docx2python:提取 docx 的页眉、页脚、文本、脚注、尾注、属性和图像[536]
189、WechatMoments:微信朋友圈导出工具[537]
190、low_cost_robot:超低成本实现机械臂[538]
191、drawpyo:用 Python 生成 Draw.io 图表[539]
192、drawdb:免费直观的在线数据库设计工具和 SQL 生成器[540]
193、pylyzer:快速的 Python 静态代码分析器和语言服务器[541]
194、anthropic-cookbook:一些有趣而有效的使用 Claude 的方法[542]
195、Flowmium:用 Rust 写的 Python 工作流编排器[543]
196、github2file:从 Github 下载和处理文件[544]
197、Python 知识备忘录[545]
198、DouZero:通过自玩深度强化学习掌握斗地主[546]
199、dashboard-icons:仪表板图标资源[547]
200、newspaper4k:从新闻网站提取文章、标题和元数据[548]
201、translateLocally:在本机上用 LLM 快速安全地翻译[549]
202、constable:将打印直接插入 AST 进行状态调试[550]
203、TextBlob:情感分析、词性标记、名词短语提取、翻译等[551]
204、wewe-rss:生成微信公众号 RSS,支持私有化部署[552]
205、llama3:Meta Llama 3 的官方仓库[553]
206、llama3-Chinese-chat:Llama3 中文仓库,各种聚合资料[554]
207、reader:将 URL 转换为对 LLM 友好的文本[555]
208、tasktiger:基于 Redis 的 Python 任务队列[556]
209、utt:用 Python 编写的简易命令行时间跟踪器[557]
210、simone:将 YouTube 视频转换为文章进行发布[558]
211、h11:用纯 Python 实现的 HTTP/1.1 库[559]
212、browser-hub:浏览器包装器,可运行多个浏览器实例[560]
213、lingua-py:极准确的自然语言检测库[561]
214、photo-similarity-search:基于苹果芯片的照片相似度 Web 应用[562]
215、Windrecorder:记录屏幕内容,实现记忆搜索[563]
216、logfire:用于 Python 的可观测性工具[564]
217、pyinfra:用 Python 实现基础设施自动化[565]
218、pipxu:使用 UV 在隔离环境中安装和运行 Python 程序[566]
219、tkforge:在 Figma 中拖放创建 Python GUI[567]
220、TagStudio:文件和照片管理系统[568]
221、coredumpy:保存崩溃的站点以作事后调试[569]
222、plane:开源的 JIRA、Linear 和 Asana 替代品[570]
223、Scrapegraph-ai:基于 AI 的 Python 抓取工具[571]
224、tv:自动收集 IPv4 酒店电视直播源[572]
225、netprobe_lite:用 Python 开发的网络性能测试工具[573]
226、dangerzone:将有害的 PDF、office 文档或图像转换为安全的 PDF[574]
227、MS-DOS:MS-DOS 1.25、2.0 和 4.0 的源代码[575]
228、pywinassistant:用自然语言控制 Windows 用户界面[576]
229、chinese-calendar:判断一天是不是法定节假日/工作日[577]
230、Oven:探索 Python PyPI 包[578]
231、tetos:适用于多种 TTS 服务的统一接口[579]
232、relax-py:又一个 Python Web 框架[580]
233、哈佛大学 2024 年 CS50 线上课程[581]
234、portr:专为团队设计的开源的 ngrok 替代方案[582]
235、py-compress-compare:对比分析 zlib、LZ4、Brotli 和 Zstandard[583]
236、pyspread:用 Python 开发的电子表格,可支持 Python 代码[584]
237、PgQueuer:基于 PostgreSQL 的任务队列库[585]
238、你用人工智能做过的最实用的事情是什么?[586]
239、The-Python-Graph-Gallery:数百个用 Python 绘制的图表[587]
240、parler-tts:高质量的 TTS 模型[588]
241、UXsim:道路上的车辆交通流模拟器[589]
242、Quads:基于四叉树的计算机艺术[590]
243、bilibot:用哔哩哔哩用户评论微调的本地聊天机器人[591]
244、pyaction:带有 Python、git 和 Github CLI 的 Docker 容器[592]
245、firecrawl:将整个网站变成 LLM-ready 的 markdown[593]
246、plotille:使用盲文点在终端中绘图[594]
247、petl:Python 提取、转换和加载数据表[595]
248、FunClip:视频语音识别和剪辑工具,集成 AI 剪辑功能[596]
249、map-machine:OpenStreetMap 的 Python 渲染器[597]
250、IC-Light:给图片加上打光照明[598]
251、用于处理 Excel 的 Python 资源[599]
252、yen:Python 虚拟环境管理工具,无需预装 Python[600]
253、Tensor-Puzzles:21 个张量谜题[601]
254、dishka:依赖注入框架[602]
255、hstream:将 Python 脚本转换为 Web 应用[603]
256、cover-agent:AI 自动生成测试,提升代码覆盖率[604]
257、pygments:用 Python 开发的通用型语法高亮工具[605]
258、hashquery:在数据仓库中定义和查询 BI 模型[606]
259、Python 有哪些指标监测库?[607]
260、stamina:可用于生产的 Python 重试库[608]
261、piku:支持对自己的服务器作 git 推送部署[609]
262、mql:用自然语言输入生成 SQL 查询[610]
263、llama-fs:基于 llama 3 的自组织文件系统[611]
264、orjson:快速准确的 JSON 库,支持数据类、日期时间和 Numpy[612]
265、asyncssh:在 asyncio 上提供 SSHv2 协议的异步客户端和服务器[613]
266、ipyblender-experimental:Jupyter 中引入 Blender[614]
267、searxng:免费的互联网元搜索引擎,汇总各种搜索服务和数据库的结果[615]
268、rio:纯 Python 的 Web 开发框架,无需 JavaScript、HTML 和 CSS[616]
269、buku:个人的文本迷你网络[617]
270、resume-builder:纯 Python 开发的简历生成工具[618]
271、more-itertools:比 itertools 丰富的可迭代对象操作[619]
272、tach:强制实施模块化、解耦的包架构[620]
273、Zango:构建企业级应用/微服务的 Python Web 框架[621]
274、pdm:支持最新 PEP 标准的 Python 包和依赖项管理工具[622]
275、Think Python 第三版(免费在线)—Think Python, 3rd edition[623]
276、关于音乐处理的 Python 基础笔记[624]
277、ChatTTS:用于日常对话的生成语音模型[625]
278、几个与 ChatTTS 相关的项目[626]
279、koheesio:构建高效数据管道的 Python 框架[627]
280、groqbook:使用 Groq 和 Llama3 在几秒内生成整本书[628]
281、cachebox:用 Rust 开发的高性能 Python 缓存库[629]
282、mesop:Google 开源基于 Python 的 UI 框架[630]
283、Qwen2:阿里云开源的大模型系列[631]
284、RSS-Translator:简洁可自部署的 RSS 翻译器[632]
285、farfalle:AI 搜索引擎, 用本地或云 LLM 自托管[633]
286、chsrc:全平台命令行换源工具[634]
287、WeasyPrint:非常棒的工具,将 Web 生成 PDF 文档[635]
288、oxo:现代的安全扫描编排器[636]
289、jupyterlab-desktop:JupyterLab 桌面版,基于 Electron[637]
290、teo:模式驱动的 Web 服务端框架[638]
291、aiosql:Python 中的简单 SQL[639]
292、thread:AI 驱动的 Python 笔记本,使用 React 构建[640]
293、OpenRecall:Windows Recall 的开源替代[641]
294、requests-futures:使用 Futures 实现的异步 Python HTTP Requests[642]
295、websocket-client:Python 的 WebSocket 客户端[643]
296、Freeway:WiFi 渗透测试与审计工具[644]
297、cibuildwheel:以最少的配置为所有平台构建 Python wheel[645]
298、超过 6000 份免费的速查表[646]
299、pdf-to-podcast:将任何 PDF 转换为播客节目[647]
300、prettypretty:漂亮的终端颜色库[648]
301、django-render:使用 Django 和 React 构建用户友好的应用[649]
302、holmesgpt:GPT 支持的 DevOps 助手[650]
303、labelme:用 Python 作图像多边形标注[651]
304、aurora:Python 实现的快速、可扩展的静态站点生成器[652]
305、httpstat:使 CURL 统计变得简单[653]
306、writer-framework:用于创建 AI 应用的全栈框架[654]
307、surya:OCR、布局分析、顺序读取、90+ 种语言的行检测[655]
308、MiniCPM-Llama3-V 2.5:手机上媲美 GPT-4V 的多模态 LLM[656]
309、pyod:用于异常值检测 Python 库[657]
310、warp:用于高性能 GPU 仿真和图形的 Python 框架[658]
311、Your-Journey-To-Fluent-Python:你的流畅的 Python 之旅[659]
312、llm:从命令行访问大语言模型[660]
313、lmdocs:使用 LLM 生成 Python 项目的帮助文档[661]
314、make-python-devex:使用 Make、Homebrew、pyenv、poetry 等工具的示例[662]
315、vulture:查找无效的 Python 代码[663]
316、CleanMyWechat: 自动删除 PC 端微信缓存数据[664]
317、wxauto:Windows 版微信自动化,可发送/接收消息,简单微信机器人[665]
318、youdaonote-pull:一键导出/备份有道云笔记的所有笔记[666]
319、reladiff:跨数据库对大型数据集作高性能比对[667]
320、hrms:开源人力资源和薪资管理软件[668]
321、burr:构建能够做出决策的应用(聊天机器人、代理、仿真等)[669]
322、thread:AI 驱动的 Jupyter Notebook[670]
323、graphrag:基于图形的模块化 RAG 系统[671]
324、puepy:基于 PyScript 的 Python+Webassembly 前端框架[672]
325、psqlpy:Rust 写的异步 Python PostgreSQL 驱动[673]
326、pretzelai:Jupyter Notebook 们的现代替代品[674]
327、meet-libai: 构建李白知识图谱,训练 AI 李白智能体[675]
328、flpc:Rust 开发的 Python 正则表达式库[676]
329、Taiwan-LLM:台湾繁体中文 LLM[677]
330、ttkbootstrap:tkinter 的增强主题,受 Bootstrap 启发的现代平面风格[678]
331、bunkerweb:开源的 Web 应用防火墙(WAF)[679]
332、AI-Math-Notes:交互式的 AI 数学黑板[680]
333、cookiecutter-django:快速启动生产就绪的 Django 项目[681]
334、Linly-Talker:数字化身系统,结合大语言模型与视觉模型[682]
335、dnstwist:检测域名的钓鱼攻击、拼写错误抢注和品牌冒充[683]
336、posting:位于终端里的现代 API 客户端[684]
337、filesystem_spec:Python 文件系统应遵守的规范[685]
338、babel:Python 国际化库[686]
339、fastapi-docker-temp:基于 FastAPI 的最小化 Docker 项目模版[687]
340、crawlee-python:Python Web 抓取和浏览器自动化库[688]
341、django-sql-explorer:通过 SQL 查询,在整个公司内轻松共享数据[689]
342、pyxel:Python 的像素风游戏开发引擎[690]
343、0xtools:分析 Linux 系统上应用的性能[691]
344、Secator:渗透测试人员的瑞士军刀[692]
345、rss2newsletter:将 RSS/Atom feed 转换为邮件通讯[693]
346、vectorlite:SQLite 的快速可调节的向量搜索扩展[694]
347、LivePortrait:让人像肖像栩栩如生[695]
🐢播客&视频
1、PSF 官宣一档播客节目:Python 的隐藏人物[696]
2、Talk Python To Me #442 使用 msgspec 作超高速的消息解析[697]
3、DjangoCon US 2023 的视频列表,60 个视频[698]
4、PyConChina 2023 的演讲视频[699]
5、Episode #184:PyCoder's Weekly 的 2023 年总结[700]
6、Requests vs Httpx vs Aiohttp 该选哪一个呢?[701]
7、为什么 Python, Go, Rust, Kotlin 没有三元运算符?[702]
8、 捕蛇者说 Ep 44. 与 Tualatrix 聊聊独立开发使用的技术栈[703]
9、给 Pythonistas 的 Rust 编程入门教程[704]
10、Meta 喜欢 Python[705]
11、Talk Python To Me #449:使用 FastUI 构建 UI[706]
12、带大家感受一下没有 GIL 的 CPython[707]
13、ruff、uv 和 Astral:Python 工具链,使用 Rust 提速[708]
14、使用 Nextjs、Tailwind 和 Django 克隆一个全栈的 Airbnb[709]
15、Django Brew:一档新的 Python 播客[710]
16、使用 Django、Channels 和 HTMX 克隆一个流式 ChatGPT[711]
17、2024 年学习数据科学的系列视频[712]
18、2024 年菲律宾 PyCon 演讲视频列表[713]
19、2024 年构建大语言模型的小指南[714]
20、2023 年的 800 多期 Python 演讲视频[715]
21、教程:使用 Python + HTMX + Tailwind 作 Web 开发[716]
22、core.py[717] Ep 10:开发者聊 Python 3.13 的 REPL[718]
23、The Python Show 40 - 与 Antonio Cuni 一起聊开源开发[719]
24、你最喜欢的有关 Python 的 YouTube 频道是什么?[720]
25、PyCon 2024 现场录制的播客[721]
26、图灵奖得主巡礼系列播客,已更新 15 期[722]
27、PyCon US 2024 演讲视频列表[723]
28、PyCon Sweden 2024 演讲视频[724]
🥂讨论&问题
1、为什么 Python 会有.venv 虚拟环境的概念?[725]
2、Java 如何调用含有第三方依赖的 Python 项目?[726]
附录
1、Python on Mobile: State of the Union[727]
2、为什么我不推荐写所谓的 main 函数?[728]
3、“降临节日历”系列文章[729]
4、faster-whisper:使用 CTranslate2 作更快的 Whisper 转录[730]
5、Reclaiming the Web with a Personal Reader[731]
6、Flask 已死,FastAPI 永生[732]
7、理性参与讨论《Flask 已死,FastAPI 永生》[733]
8、数据兔子洞:爱丽丝从 Pandas 到 DuckDB 仙境的冒险[734]
9、PEP-3141--数字的类型层级[735]
10、ByteTalk 3. 跟图拉鼎聊聊独立开发者的那些事[736]
11、Fortran 社区的讨论[737]
12、Polars 实用教程[738]
13、用 SQL 求解魔方[739]
14、用 SQL 实现量子计算机模拟器[740]
15、Python uv 中文翻译[741]
16、Rye: a Hassle-Free Python Experience[742]
17、Rye Grows With UV[743]
18、Python 及很多项目的 EOL 时间[744]
19、谷歌、微软、Meta?谁才是 Python 最大的金主?[745]
20、tox 教程[746]
21、将指针的地狱引入 Python[747]
22、uv - Python 包的下一次演变?[748]
23、suno 逆向工程 API[749]
24、Python 之父为什么嫌弃 lambda 匿名函数?[750]
25、Google 内部专注于代码质量的“Code Health”系列[751]
26、RSS 预览美化[752]
27、开发编程语言的十年[753]
28、通过 for 循环,比较 Python 与 Ruby 编程思想的差别[754]
29、编程语言的四种错误处理方法[755]
30、两种风格的错误处理[756]
31、将 Python 错误作为值:比较 Go 和 Rust 的使用模式[757]
32、Python 为什么不用分号作终止符?[758]
33、h2:HTTP/2 协议栈的纯 Python 实现[759]
34、Tkinter-Designer[760]
35、使用 Python + HTMX + Tailwind 作 Web 开发[761]
36、What's New In Python 3.13[762]
37、翻译:ython Asyncio 工作原理:从零实现一个简化版 Asyncio[763]
38、chinese-calendar[764]
39、对比最流行的 6 个 Python 日志记录库[765]
40、提名高天为 Python 核心开发者[766]
41、Python 中 -m 的典型用法、原理解析与发展演变[767]
42、Python 已经支持中文变量名啦![768]
43、NumPy 2.0.0 Release Notes[769]
44、Polars vs. pandas:有什么区别?[770]
45、Python 论坛的详细讨论[771]
46、翻译:Python 的包管理工具真是多啊[772]
47、如何上手最新的 CPython JIT?[773]
参考资料
[1]
PEP-738:将 Android 添加为第 3 层支持的平台: https://pep-previews--3586.org.readthedocs.build/pep-0738/#
[2]深度解析 Marker:AI 驱动的 PDF 布局检测引擎的源码解读: https://journal.hexmos.com/marker-pdf-document-ai/
[3]现实世界的 match/case: https://nedbatchelder.com/blog/202312/realworld_matchcase.html
[4]pytest 守护进程:提升 10 倍本地测试迭代速度: https://discord.com/blog/pytest-daemon-10x-local-test-iteration-speed
[5]使用 Python 88 行代码写一个简易的 Android AI 程序: https://vra.github.io/2023/10/14/android-ai-app-in-88-lines-of-python-code/
[6]在 Python 中不需要这些无谓的操作: https://www.bitecode.dev/p/you-dont-need-this-in-python
[7]为什么要用“if TYPE_CHECKING”?: https://vickiboykis.com/2023/12/11/why-if-type_checking/
[8]对比 SQLALchemy 与 Django ORM: https://st4lk.github.io/en/blog/2023/12/09/sqlalchemy-vs-django-orm/
[9]Python init.py 的最佳实践: https://coderslegacy.com/python-init-py-best-practices/
[10]Mojo:来自一位 Python 研究员的观点: https://augierpi.gricad-pages.univ-grenoble-alpes.fr/mojo-the-point-of-view-of-a-researcher-using-python.html
[11]Python 中的简单 HTTP 状态码: https://www.b-list.org/weblog/2023/dec/04/python-http-status-codes/
[12]CPython 开发实战:实现 None 感知运算符 ?. 和 ??: https://juejin.cn/post/7310101543776829440
[13]代码的运行多于被阅读: https://olano.dev/2023-11-30-code-is-run-more-than-read/
[14]在并行程序中实际最多能用多少个 CPU?: https://pythonspeed.com/articles/cpu-thread-pool-size/
[15]你的 Python 包都装到哪了?: https://frostming.com/2019/03-13/where-do-your-packages-go/
[16]移除 CPython 中的私有 C API 函数: https://vstinner.github.io/remove-c-api-funcs-313.html
[17]Python 小陷阱:复制列表时的问题: https://andrewwegner.com/python-gotcha-list-copy.html
[18]取消 Asyncio 任务的最佳实践: https://superfastpython.com/asyncio-task-cancellation-best-practices/
[19]Python 项目中的配置:没有魔法,只是必要的实践: https://robertrode.com/2023/10/02/configuration-in-python-applications-no-magic-just-necessary-practice.html
[20]优化 Python 的 Flask、Django 和 FastAPI 程序: https://tonybaloney.github.io/posts/fine-tuning-wsgi-and-asgi-applications.html
[21]为什么 Python、Go 和 Rust 都不支持三元运算符?: https://pythoncat.top/posts/2023-04-03-condition
[22]Python 中的“key”参数的关键: https://www.thepythoncodingstack.com/p/the-key-to-the-key-parameter-in-python
[23]从 Python 数据类中消除状态突变方法: https://rednafi.com/python/dataclasses_and_methods/
[24]Flask 已死,FastAPI 是未来: https://zhuanlan.zhihu.com/p/672806587
[25]Python + Flask 打造属于自己的 RSS 安全信息流: https://xz.aliyun.com/t/12980
[26]Microdot:又一个 Python Web 框架: https://blog.miguelgrinberg.com/post/microdot-yet-another-python-web-framework
[27]周末 AI 项目:在 2004 年的诺基亚 9500 上运行 7B 大型语言模型: https://ai.plainenglish.io/a-weekend-ai-project-running-a-7b-large-language-model-on-a-nokia-9500-from-2004-04f77e123194
[28]Python Asyncio 之常见的三个坑: https://so1n.me/2023/12/28/python_asyncio_lib_how_to_use_it_correctly/
[29]Bash、Lua、Python 和 Rust 的梦幻岛冒险: https://dev.to/proteusiq/to-code-and-beyond-a-neverland-adventure-in-bash-lua-python-and-rust-1jon
[30]YAML、Python 和 Holy Graal: https://yamlscript.org/posts/advent-2023/dec-21/
[31]“Python -m”:最酷的 Python 标记,真的值得更多关注: https://www.blog.dailydoseofds.com/p/python-m-the-coolest-python-flag
[32]Python CI 的初学者指南: https://switowski.com/blog/ci-101/
[33]Python Type Hints 简明教程(基于 Python 3.12): https://zhuanlan.zhihu.com/p/464979921
[34]Pyinstaller EXE 被检测为病毒?解决方案和替代方案: https://coderslegacy.com/pyinstaller-exe-detected-as-virus-solutions/
[35]Fontimize 简介|精确字体子集,仅使用你网站的字符: https://daveon.design/introducing-fontimize-subset-fonts-to-exactly-and-only-your-websites-used-characters.html
[36]GH-113464:copy-and-patch 的 JIT 编译器: https://github.com/python/cpython/pull/113465
[37]消失的隐喻:Zip 和 Paste: https://www.jefftk.com/p/losing-metaphors-zip-and-paste
[38]40 亿个 IF 语句: https://andreasjhkarlsson.github.io//jekyll/update/2023/12/27/4-billion-if-statements.html
[39]简单聊聊 Python 3.13 的 JIT 方案: https://www.manjusaka.blog/posts/2024/01/03/a-simple-introduction-about-python-jit/
[40]在 Python 中读取 Excel 的最快方法: https://hakibenita.com/fast-excel-python
[41]Flask 教程:从头开始构建可扩展的 Web 项目: https://realpython.com/flask-project/
[42]Python、C、汇编 - 提高 2500 倍余弦相似度运算: https://ashvardanian.com/posts/python-c-assembly-comparison/
[43]使用 AI 检测 AI 生成的照片: https://tolkunov.dev/posts/ai-or-not/
[44]Python 内置函数 max 有毛病: https://mathspp.com/blog/max-is-broken
[45]App 自动化测试之 Appium 应用篇| Appium 常用 API 及操作: https://juejin.cn/post/7318952376593006633
[46]使用 Django 构建一个实时消息应用: https://www.photondesigner.com/articles/instant-messenger
[47]了解 Python 中的数值数据类型: https://fullspeedpython.com/articles/understanding-numeric-data-types/
[48]非阻塞的 Asyncio 日志记录: https://superfastpython.com/asyncio-log-blocking/
[49]Instagram 如何仅凭 3 名工程师实现用户规模 1400 万: https://read.engineerscodex.com/p/how-instagram-scaled-to-14-million
[50]Google 设计的类 Python 编程语言 Starlark: https://github.com/bazelbuild/starlark/blob/master/design.md
[51]数据工程的历史和现状: https://www.dedp.online/part-1/1-introduction/history-and-state-of-data-engineering.html
[52]Python 3.13 也有了 JIT 编译器: https://tonybaloney.github.io/posts/python-gets-a-jit.html
[53]NumPy 2 即将推出:防止破坏,更新你的代码: https://pythonspeed.com/articles/numpy-2/
[54]Python 反直觉地在科学计算中兴起: https://cerfacs.fr/coop/fortran-vs-python
[55]在 Pandas 中实现快速高效的不等价连接: https://samukweku.github.io/data-wrangling-blog/notebooks/Fast-and-Efficient-Inequality-Joins-in-Pandas.html
[56]Pandas Profiling:详细介绍它的使用: https://www.influxdata.com/blog/pandas-profiling-tutorial/
[57]深入了解 Python 的 functools.wraps 装饰器: https://jacobpadilla.com/articles/Functools-Deep-Dive
[58]纯 Python 实现的 SIMD: https://www.da.vidbuchanan.co.uk/blog/python-swar.html
[59]保护 Flask 程序的最佳实践: https://escape.tech/blog/best-practices-protect-flask-applications/
[60]使用服务器发送事件 (SSE) 将实时更新推送到客户端: https://rednafi.com/python/server_sent_events/
[61]开发用 AI 驱动的 TODO 应用: https://tolkunov.dev/posts/ai-powered-todo-app/
[62]PEP-736 调用时关键字参数的简写语法: https://peps.python.org/pep-0736/
[63]如何用 Python 删除图像中的背景?: https://pythonguides.com/remove-background-from-image-in-python/
[64]一年后的 Python 打包:回顾 2023 年 Python 的打包: https://chriswarrick.com/blog/2024/01/15/python-packaging-one-year-later/
[65]PyCon 2023(美国和澳大利亚)所有演讲视频: https://techtalksweekly.substack.com/p/all-pycon-2023-talks-sorted-by-views
[66]Python 的 Synchronized: https://thiagowfx.github.io/2024/01/synchronized-in-python/
[67]更快的 Python C 扩展的类型信息: https://bernsteinbear.com/blog/typed-c-extensions/
[68]通过示例比较 Kotlin 和 Python 中的协程: https://medium.com/@ms.carmen.alvarez/comparing-coroutines-by-example-in-kotlin-and-python-7e60746eae18
[69]Pydantic 处理 1970 年代时间的奇特问题: https://dev.arie.bovenberg.net/blog/pydantic-timestamps/
[70]浏览器上的代码游乐场: https://antonz.org/in-browser-code-playgrounds/
[71]SQLite 的“database is locked”错误: https://blog.pecar.me/django-sqlite-dblock
[72]数据处理神器可不止 Pandas 哦,还有 Polars,全方位解析 Polars: https://www.cnblogs.com/traditional/p/17959796
[73]用 Python 函数构建 HTML 组件: https://ricardoanderegg.com/posts/python-build-html-components-lxml/
[74]500 行 SQL 实现一个 GPT: https://explainextended.com/2023/12/31/happy-new-year-15/
[75]Python 装饰器的 3 个真实案例: https://www.bitecode.dev/p/xmas-decorations-part-3
[76]这不是面试建议:Python 不用堆和树实现按优先级过期的 LRU 缓存: https://death.andgravity.com/lru-cache
[77]增强 Markdown 语言以实现出色的 Python 图形界面: https://www.taipy.io/posts/augmenting-the-markdown-language-for-great-python-graphical-interfaces
[78]7 个 Python 内存优化技巧: https://medium.com/techtofreedom/7-python-memory-optimization-tricks-to-enhance-your-codes-efficiency-5ef65bf415e7
[79]Python 中的垃圾回收:你需要知道的事情: https://rushter.com/blog/python-garbage-collector/
[80]Postgres 与 DynamoDB:该选择哪个数据库?: https://testdriven.io/blog/postgres-vs-dynamodb/
[81]使用 Streamlit 在 Python 中创建仪表板: https://blog.streamlit.io/crafting-a-dashboard-app-in-python-using-streamlit/
[82]scrapscript.py 编程语言的实现过程: https://bernsteinbear.com/blog/scrapscript/
[83]Python Cryptography 已支持 X.509: https://blog.trailofbits.com/2024/01/25/we-build-x-509-chains-so-you-dont-have-to/
[84]我对动态类型感到失望: https://buttondown.email/hillelwayne/archive/i-am-disappointed-by-dynamic-typing/
[85]Python “令人失望”的超能力: https://lukeplant.me.uk/blog/posts/pythons-disappointing-superpowers/
[86]使用 Django、Django REST 和 Next.js 构建全栈项目: https://dev.to/koladev/building-a-fullstack-application-with-django-django-rest-nextjs-3e26
[87]使用 SQL、Node.js、Django 和 Next.js 构建仪表板项目: https://dev.to/andrewbaisden/a-day-in-the-life-of-a-developer-building-a-dashboard-app-with-sql-nodejs-django-and-nextjs-5en7
[88]用 Profila 分析你的 Numba 代码: https://pythonspeed.com/articles/numba-profiling/
[89]Python datetime 标准库的 10 个陷阱: https://dev.arie.bovenberg.net/blog/python-datetime-pitfalls/
[90]使用 Python 纠正语法的 4 种方法: https://www.listendata.com/2024/01/4-ways-to-correct-grammar-with-python.html
[91]Python 调试技巧: https://www.syntaxerror.tech/syntax-error-11-debugging-python/
[92]调试 Python 与 C 语言混合的项目: https://developer.nvidia.com/blog/debugging-mixed-python-and-c-language-stack/
[93]分析“使用 Python 和 2MB RAM 对一百万个 32 位整数进行排序”: https://www.bitecode.dev/p/analyzing-sorting-a-million-32-bit
[94]使用 Python + Pylasu 实现语言解析器: https://tomassetti.me/implement-parsers-with-pylasu/
[95]动态规划不是黑魔法: https://qsantos.fr/2024/01/04/dynamic-programming-is-not-black-magic/
[96]什么时候应避免静态类型检查?: https://typing.readthedocs.io/en/latest/source/typing_anti_pitch.html
[97]实用指南:用 Python 运行开源的 LLM: https://christophergs.com/blog/running-open-source-llms-in-python
[98]uv:Rust 开发的 Python 打包工具: https://astral.sh/blog/uv
[99]Rye:愿景延续: https://lucumr.pocoo.org/2024/2/4/rye-a-vision/
[100]为什么越来越多用 Rust 开发的库?: https://baincapitalventures.com/insight/why-more-python-developers-are-using-rust-for-building-libraries/
[101]80 行 Python 实现一个搜索引擎: https://www.alexmolas.com/2024/02/05/a-search-engine-in-80-lines.html
[102]如何计算 Python 中的 CPU 指令数?: https://blog.mattstuchlik.com/2024/02/08/counting-cpu-instructions-in-python.html
[103]Python 复用装饰器代码: https://www.kawabangga.com/posts/5757
[104]像专业人士一样处理 Asyncio 任务: https://jacobpadilla.com/articles/handling-asyncio-tasks
[105]使用 textwrap 模块操作字符串: https://martinheinz.dev/blog/108
[106]总结 Python 版本间的主要变更点: https://www.nicholashairs.com/posts/major-changes-between-python-versions/
[107]将 Postgres 作为队列使用: https://leontrolski.github.io/postgres-as-queue.html
[108]我在所有 Django 项目中都用的 20 个包: https://learndjango.com/tutorials/20-django-packages-i-use-every-project
[109]Python 元类的真实案例: https://dev.to/anbagu/real-case-of-python-metaclass-application-2pj8
[110]一万亿行气象数据的编程挑战: https://blog.coiled.io/blog/1trc.html
[111]白宫建议使用 Python 等内存安全语言: https://pyfound.blogspot.com/2024/02/white-house-recommends-.html
[112]回顾 Requests 库的问题: https://blog.ian.stapletoncordas.co/2024/02/a-retrospective-on-requests
[113]Python 的 UV 工具确实相当不错: https://micro.webology.dev/2024/02/29/pythons-uv-tool.html
[114]Python 生成器未得到充分利用: https://www.slashtmp.io/posts/generators/
[115]使用 Python 作高级 Web 抓取:从任意网站抓取数据: https://jacobpadilla.com/articles/advanced-web-scraping-techniques
[116]Django REST 框架 + Vue 对比 Django + HTMX: https://testdriven.io/blog/drf-vue-vs-django-htmx/
[117]可组合数据系统之路:对过去 15 年和未来的思考: https://wesmckinney.com/blog/looking-back-15-years/
[118]用 Django 作 SQLite 基准测试: https://blog.pecar.me/django-sqlite-benchmark
[119]Python 3.13 的 JIT 是如何实现的?: https://zhuanlan.zhihu.com/p/682997904
[120]Python 网页抓取的终极指南: https://proxiesapi.com/articles/web-scraping-in-python-the-complete-guide
[121]为简单架构作辩护: https://danluu.com/simple-architectures/
[122]关于“调度”的内部原理: https://tontinton.com/posts/scheduling-internals/
[123]使用 Python 从头开始实现 RSA: https://coderoasis.com/implementing-rsa-from-scratch-in-python/
[124]Python IAQ:不常见的问题: https://norvig.com/python-iaq.html
[125]为什么我喜欢 Nox?: https://hynek.me/articles/why-i-like-nox/
[126]我最喜欢的数据结构:trie: https://jamesg.blog/2024/01/16/trie/
[127]用 Python 处理 CSV 文件的速度能有多快?: https://datapythonista.me/blog/how-fast-can-we-process-a-csv-file
[128]Django 项目的多语言支持: https://medium.com/@sakhawy/multilingual-support-in-django-5706e1e144a8
[129]Python 升级手册:Lyft 如何大规模升级 1500+ 代码仓: https://eng.lyft.com/python-upgrade-playbook-1479145d52f4
[130]将 Tailwind CSS 添加到 Django 的最简单方法: https://www.photondesigner.com/articles/tailwind-with-django
[131]初学者意想不到的 Python 陷阱: https://www.bitecode.dev/p/unexpected-python-traps-for-beginners
[132]使用 Python 和 Grafana 更好地冷却我的 PC: https://calbryant.uk/blog/better-pc-cooling-with-python/#
[133]使用搭载骁龙 8 Gen 3 的安卓手机运行 AI 大模型: https://soulteary.com/2024/02/29/run-large-ai-models-on-android-phones-with-snapdragon-8-gen-3.html
[134]入行 14 年,我还是觉得编程很难: https://www.piglei.com/articles/programming-is-still-hard-after-14-years/
[135]介绍 Python 上下文管理器及其语法糖: https://bjoernricks.github.io/posts/python/context-manager
[136]Python deque 使用教程: https://mathspp.com/blog/python-deque-tutorial
[137]Python 的泛型函数和泛型类: https://guicommits.com/python-generic-type-function-class/
[138]Python Gevent 实践:常见的陷阱: https://upsun.com/blog/python-gevent-best-practices/
[139]Python pickles 的安全问题: https://lwn.net/SubscriberLink/964392/498a12fe44f51139/
[140]构建开源去中心化的电子书搜索引擎: https://github.com/j2qk3b/ebook-demo/blob/main/tutorial.md
[141]Python import 跟 Java import 有什么区别?: https://juejin.cn/post/7345423755948572726
[142]Python 中有指针吗?: https://nedbatchelder.com/blog/202403/does_python_have_pointers.html
[143]当 Python 无法线程化时:深入了解 GIL 的影响: https://pythonspeed.com/articles/python-gil/
[144]我的开源优先级转变了: https://gregoryszorc.com/blog/2024/03/17/my-shifting-open-source-priorities/
[145]如何远程唤醒家里的电脑?: https://bernsteinbear.com/blog/wakeonlan/
[146]Python 程序的内存占用情况: https://codebeez.nl/blogs/the-memory-footprint-of-your-python-application/
[147]正则表达式字符“$”并不意味着“字符串末尾”: *https://sethmlarson.dev/regex-$-matches-end-of-string-or-newline*
[148]介绍 Python 中所有的双下方法: https://www.pythonmorsels.com/every-dunder-method/
[149]Python 多语言支持实现国际化与本地化的最佳实践: https://juejin.cn/post/7348264185325568036
[150]在 Windows 上利用 Qwen 大模型搭建一个 ChatGPT 式的问答小助手: https://juejin.cn/post/7347670979634167823
[151]使用 Python 解析 URL: https://tkte.ch/articles/2024/03/15/parsing-urls-in-python.html
[152]Python 鸭子类型:编写灵活且解耦的代码: https://realpython.com/duck-typing-python/
[153]用 Python 实现最小可用的 PostgreSQL: https://ivdl.co.za/2024/03/02/pretending-to-be-postgresql-part-one-1/
[154]给框架开发者的建议: https://deven.codes/posts/building-for-builders/
[155]蒙特利尔效应:为什么编程语言需要有风格沙皇: https://earthly.dev/blog/language-style-czar/
[156]去中心化的边缘计算平台: https://fission.codes/blog/functions-everywhere-only-once/
[157]设计一个纯 Python Web 框架: https://reflex.dev/blog/2024-03-21-reflex-architecture/
[158]修复 PyPy 增量 GC 中的 一个 bug: https://www.pypy.org/posts/2024/03/fixing-bug-incremental-gc.html
[159]复活 PyMiniRacer,Python 中的 V8: https://bpcreech.com/post/mini-racer/
[160]Python 与 Javascript 进行数据通信: https://juejin.cn/post/7351690896918003775
[161]更适合慢函数调用的 Python 缓存实现: https://docs.sweep.dev/blogs/file-cache
[162]使用 Collectfasta 加速 Django 的 collectstatic 命令: https://jasongi.com/2024/03/04/speed-up-djangos-collectstatic-command-with-collectfasta/
[163]用原生 Python 扩展和 Dispatch 实现分布式协程: https://stealthrocket.tech/blog/distributed-coroutines-in-python/
[164]使用 Numba 加快代码速度的错误方法: https://pythonspeed.com/articles/slow-numba/
[165]关于优化 Django 系统检查框架: https://adamj.eu/tech/2024/03/23/django-optimizing-system-checks/
[166]大数定律,为什么去赌场是个坏主意: https://easylang.dev/apps/tutorial_mcarlo.html
[167]AutoDev:微软发布的自动化 AI 驱动开发框架: https://arxiv.org/html/2403.08299v1
[168]我坚持用 Django 而不是 FastAPI 的 10 个原因: https://www.david-dahan.com/blog/10-reasons-i-stick-to-django
[169]Django 与 ASGI 服务器: https://fly.io/django-beats/asgi-deployment-options-for-django
[170]JSON 中的数字到底是什么?: https://blog.trl.sn/blog/what-is-a-json-number/
[171]CPython 源码解析:为什么 Python 列表相乘的结果那么奇怪?: https://codeconfessions.substack.com/p/why-do-python-lists-multiply-oddly
[172]Celery 源码分析系列: https://juejin.cn/column/7352789840351887369
[173]我在 2024 年如何管理 Python: https://outlore.dev/blog/python-dev-2024/
[174]使用 Pyodide 和 WebAssembly 将 Python 引入 Cloudflare Workers: https://blog.cloudflare.com/python-workers
[175]学习使用和不使用 AI 编码: https://austinhenley.com/blog/learningwithai.html
[176]使用 Whisper、FFmpeg 和 Python 轻松转录视频并添加字幕: https://www.editframe.com/guides/easy-video-transcription-and-subtitling-with-whisper-ffmpeg-and-python
[177]如何用 GitHub Actions 自动执行数据爬取?: https://medium.com/data-analytics-at-nesta/how-to-use-github-actions-to-automate-data-scraping-299690cd8bdb
[178]使用断点调试 Python 代码: https://www.mostlypython.com/using-breakpoints-to-explore-your-code/
[179]Python “真正的”匿名函数: https://lwn.net/Articles/964839/
[180]如何用 Python 预测日食的时间和轨迹?: https://erikbern.com/2024/04/07/predicting-solar-eclipses-with-python.html
[181]我在开源软件上全职工作 503 天的经验分享: https://mathspp.com/blog/503-days-working-full-time-on-foss-lessons-learned
[182]修复 Python 代码坏味道的最佳实践: https://www.arjancodes.com/blog/best-practices-for-eliminating-python-code-smells/
[183]如何用 Python 作质因式分解?: https://compucademy.net/prime-factorization-with-python/
[184]Supervisor-持久化进程部署方案: https://juejin.cn/post/7354406980784373798
[185]PEP-744 – 关于 JIT 编译: https://peps.python.org/pep-0744/
[186]Zapier 如何能自动执行数十亿个任务?: https://newsletter.systemdesign.one/p/zapier-architecture
[187]Meta 使用单体架构仅 5 个月就发布了 Threads: https://www.infoq.com/news/2024/04/meta-threads-instagram-5-months/
[188]Python 命名约定:最佳实践和示例: https://compucademy.net/python-naming-conventions/
[189]Great_Tables 的设计理念: https://posit-dev.github.io/great-tables/blog/design-philosophy
[190]Python 为什么不能将列表作为字典的键?: https://blog.dailydoseofds.com/p/how-python-prevents-us-from-adding
[191]使用树莓派+Python+Influxdb 开发温度监测器: https://nathanielkaiser.xyz/treehousetemps.html
[192]如何用单行 Python 代码通过面试编码: https://ivaniscoding.github.io/posts/codeinterview/
[193]当你的老师希望你去做开源: https://davidism.com/school-assignment-open-source/
[194]我每天在用的 Python f-string 代码: https://pybit.es/articles/python-f-string-codes-i-use-every-day/
[195]用 Django 和 OpenAI 开发一款语音笔记应用: https://circumeo.io/blog/entry/building-a-voice-notes-app-with-django-and-openai
[196]Python Web 开发者的最佳安全实践: https://www.arjancodes.com/blog/best-practices-for-securing-python-applications/
[197]Fedora 希望为其 Python 构建作“-O3”优化: https://fedoraproject.org/wiki/Changes/Python_built_with_gcc_O3
[198]Ruff v0.4.0:一个手写的 Python 递归下降解析器: https://astral.sh/blog/ruff-v0.4.0
[199]给 Django RSS 源设置样式: https://hyteck.de/post/django-rss
[200]Python 中快捷的概率过滤器: https://lemire.me/blog/2024/03/31/fast-and-concise-probabilistic-filters-in-python/
[201]Code Review 时,曾被我忽视的 3 件重要小事: https://www.piglei.com/articles/three-little-things-on-code-review/
[202]用 Python 记录下今天敲了多少次键盘: https://juejin.cn/post/7358289840268443702
[203]是否应该使用上界版本约束?: https://iscinumpy.dev/post/bound-version-constraints/
[204]如何开发一个代码格式化工具?: https://yorickpeterse.com/articles/how-to-write-a-code-formatter/
[205]公布 py2wasm:将 Python 程序转换为 Wasm: https://wasmer.io/posts/py2wasm-a-python-to-wasm-compiler
[206]对比 Ruby 与 Python 的 for 循环: https://softwaredoug.com/blog/2021/11/12/ruby-vs-python-for-loop.html
[207]Python 小陷阱:strip、lstrip、rstrip 删除内容比预期的多: https://andrewwegner.com/python-gotcha-strip-functions-unexpected-behavior.html
[208]用 Python 讲解进程间通信的核心机制: https://goodyduru.github.io/os/2023/09/08/ipc-introduction.html
[209]PEP 745 – Python 3.14 的发布计划: https://peps.python.org/pep-0745/
[210]Python 不同数据结构的时间复杂度: https://www.pythonmorsels.com/time-complexities/
[211]从第一性原理出发理解 Django: https://www.mostlypython.com/django-from-first-principles-2/
[212]Python 线程池的源码实现分析与相关问题探讨: https://juejin.cn/post/7361234872781029388
[213]如何用 Python 设计和实现插件架构?: https://mathieularose.com/plugin-architecture-in-python
[214]浅谈 Python、Go、Rust 的异常处理: https://juejin.cn/post/7359757993732751375
[215]mpmetrics 内存管理的设计: https://blog.trends.tf/memory-management-in-mpmetrics.html
[216]编程语言中分号的起源和优点: https://www.ntietz.com/blog/researching-why-we-use-semicolons-as-statement-terminators/
[217]谷歌在开发者大会前裁员了 Python、Flutter 和 Dart 团队: https://techcrunch.com/2024/05/01/google-lays-off-staff-from-flutter-dart-python-weeks-before-its-developer-conference/
[218]FastAPI 专家给出的 FastAPI 使用贴士: https://github.com/Kludex/fastapi-tips
[219]PEP 686:将 UTF-8 模式设为默认配置: https://peps.python.org/pep-0686/
[220]Pydantic:简化 Python 中的数据验证: https://realpython.com/python-pydantic/
[221]中小型 Python 项目配置和数据读写的最佳实践: https://yanh.tech/2024/04/best-practice-for-configuration-and-data-rw-in-small-and-medium-python-projects/
[222]为了乐趣和(并发的)收益而给 requests 库打补丁: https://blog.borrego.dev/entries/patching-requests-for-fun-and-concurrent-profit.html
[223]CPython JIT 内部原理:Python 启动时会发生什么?: https://codeconfessions.substack.com/p/cpython-runtime-internals
[224]Sleepsort:在线程休眠时排序: https://animeshchouhan.com/posts/sleepsort/
[225]Python、JavaScript 和 Ruby 用莱布尼茨公式计算 π 的值: https://www.peterbe.com/plog/leibniz-formula-for-pi
[226]10 年参加 Python 会议: https://treyhunner.com/2024/04/10-years-of-python-conferences/
[227]关于 for 循环的一些思考: https://buttondown.email/hillelwayne/archive/some-notes-on-for-loops/
[228]前 1% 精英工程师的 7 个简单的习惯: https://read.engineerscodex.com/p/7-simple-habits-of-the-top-1-of-engineers
[229]我最喜欢的 Python 3.13 新特性: https://treyhunner.com/2024/05/my-favorite-python-3-dot-13-feature/
[230]Python 3.13 新功能盘点介绍: https://iscinumpy.dev/post/python-313/
[231]Python Asyncio 工作原理:从零实现一个简化版 Asyncio: https://jacobpadilla.com/articles/recreating-asyncio
[232]友好的 Python:封装和复用: https://frostming.com/2024/friendly-python-reuse/
[233]零基础入门 Python 文件处理篇——实现一个简单的文件搜索引擎: https://juejin.cn/post/7363454217191686181
[234]用 HTMX 和 Django 开发一个 Connect Four 游戏: https://www.photondesigner.com/articles/connect4-htmx
[235]用 wxPython 开发一个简单的计算器: https://www.pythonpapers.com/p/creating-a-calculator-with-wxpython
[236]学生在入门数据科学时常犯的错误: https://austinhenley.com/blog/datasciencemistakes.html
[237]使用“不安全的 Python”加速 Numpy 代码 100 倍: https://yosefk.com/blog/a-100x-speedup-with-unsafe-python.html
[238]Python 字典详细的历史演变过程: https://discuss.python.org/t/developing-a-detailed-historical-understanding-of-python-dict-implementations/52618
[239]重新发明 Python notebook 的经验教训: https://marimo.io/blog/lessons-learned
[240]Python 软件基金会新闻:2022 和 2023 资助计划的透明度报告: https://pyfound.blogspot.com/2024/05/psf-grants-program-2022-2023.html
[241]引人注目的 Python Streamlit:精美的交互式地图和图表: https://johnloewen.substack.com/p/high-impact-python-streamlit-beautiful
[242]我絕不用 result 作為變數名稱: https://blog.kyomind.tw/no-result/
[243]Python 中使用 Loguru 记录日志: https://www.blog.pythonlibrary.org/2024/05/15/an-intro-to-logging-with-python-and-loguru/
[244]35 道 Django 技术面试题: https://learndjango.com/tutorials/django-technical-interview-questions
[245]Python 的集合是没有值的字典: https://mathspp.com/blog/sets-as-dictionaries-with-no-values
[246]使用 Sliver 渗透测试套件的针对 Mac 的 PyPi 包后门: https://www.bleepingcomputer.com/news/security/pypi-package-backdoors-macs-using-the-sliver-pen-testing-suite/
[247]为什么 TensorFlow 正在缓慢消亡?: https://thenextweb.com/news/why-tensorflow-for-python-is-dying-a-slow-death
[248]Python 中的延迟计算是什么?: https://realpython.com/python-lazy-evaluation/
[249]2014 年我的 10 个业余项目: https://medium.com/@fogleman/my-top-10-side-projects-from-2014-713a78d6fc9d
[250]无需数学公式,解释 LLM 的工作原理: https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math
[251]替代实现的问题: https://pointersgonewild.com/2024/04/20/the-alternative-implementation-problem/
[252]正则表达式匹配可以很简单且高速: https://swtch.com/~rsc/regexp/regexp1.html
[253]如何利用内存中还在运行的代码,恢复已删除的源码?: https://gist.github.com/simonw/8aa492e59265c1a021f5c5618f9e6b12
[254]PEP-667:命名空间的一致视图: https://peps.python.org/pep-0667/
[255]用 100 行代码替换 pyinstaller: https://tushar.lol/post/packaged/
[256]py.space:免费开发在线的 Python 应用: https://jeff.glass/post/pyspace/
[257]使用 Python 3.12 作静态类型函数式编程: https://wickstrom.tech/2024-05-23-statically-typed-functional-programming-python-312.html
[258]如何用 Python 动态生成 Github 个人主页 README?: https://tduyng.dev/blog/dynamic-github-profile-readme
[259]用 pyastgrep 作自定义 linting: https://lukeplant.me.uk/blog/posts/pyastgrep-and-custom-linting/
[260]使用 pygments 生成代码片段的图片: https://www.mostlypython.com/generating-code-snippets/
[261]使用纯 NumPy 实现 Llama 3: https://docs.likejazz.com/llama3.np/
[262]AI 帮你写的代码,所有权归谁?: https://www.theregister.com/2024/05/15/ai_coding_complications/
[263]聪明的代码可能是你写过最糟糕的代码: https://read.engineerscode%2A%2A/p/clever-code-is-probably-the-worst
[264]我「接见」了诺奖得主: https://frostming.com/2024/meet-with-paul/
[265]450 天成为 Python 核心开发者: https://www.bilibili.com/video/BV1of421972c
[266]Python 如何比较浮点数和整数?: https://blog.codingconfessions.com/p/how-python-compares-floats-and-ints
[267]JIT 和移除 GIL 都不是我最期待的 Python 3.13 特性: https://blog.vslira.net/2024/05/jit-and-gil-removal-are-not-even-my.html
[268]从事 Python 打包工作 6 年的不为人知的故事: https://harihareswara.net/posts/2024/references-pycon-us-keynote/
[269]庆祝 Beautiful Soup 的 20 周年: https://harihareswara.net/posts/2024/celebrate-beautiful-soups-20th-anniversary/
[270]曾经最喜欢 Ruby,现在可能是 Python: https://sgt.hootr.club/molten-matter/maybe-i-like-python-now/
[271]使用 Postgres 的 Django 异步任务队列(不是 Kafka、Rabbit MQ、Celery 或 Redis): https://simplecto.com/djang-async-task-postgres-not-kafka-celery-redis
[272]在 Streamlit 中支持异步 MongoDB 操作: https://handmadesoftware.medium.com/streamlit-asyncio-and-mongodb-f85f77aea825
[273]LangChain 实战:利用 LangChain SQL Agent 和 GPT 进行文档分析和交互: https://juejin.cn/post/7373955162127532059
[274]pyo3_asyncio:Python Asyncio 事件循环的 Rust 绑定: https://awestlake87.github.io/pyo3-asyncio/master/doc/pyo3_asyncio
[275]PyPy 已经悄悄地为我工作了好几年了: https://utcc.utoronto.ca/~cks/space/blog/python/PyPyQuietlyWorking
[276]许多实用的 Python 命令行程序: https://www.pythonmorsels.com/cli-tools/
[277]我最喜欢教的编程问题:数字长度: https://jstrieb.github.io/posts/digit-length/
[278]修复 Python 循环导入的一种方法: https://nedbatchelder.com/blog/202405/one_way_to_fix_python_circular_imports.html
[279]PEP-789:限制异步生成器的 yield,防止任务取消错误: https://peps.python.org/pep-0789/
[280]我的 PyCon US 2024 回顾: https://katherinemichel.github.io/portfolio/pycon-us-2024-recap.html
[281]Python 开发游戏如何选择引擎?: https://techartlife.com/gamedev/py-game/panda3d-engine-introduction
[282]ChatTTS:语气韵律媲美真人的开源 TTS 模型: https://juejin.cn/post/7374988830493868043
[283]使用特定的算法将运行速度提高 15×: https://pythonspeed.com/articles/lets-optimize-median-local-threshold/
[284]用 GPT-4o 生成 Flask 项目代码,能做到多好?: https://ploomber.io/blog/gpt-4o-flask/
[285]用 Python 开发 Scrapscript 语言的编译器: https://bernsteinbear.com/blog/scrapscript-baseline
[286]什么是 Python 的可哈希对象?: https://www.thepythoncodingstack.com/p/wheres-william-python-hash-hashable
[287]用一道算法题比较 Python、Go、C++、C、AWK、Forth 和 Rust 的性能: https://benhoyt.com/writings/count-words/
[288]给 NumPy 2.0 实现更快速的字符串函数: https://labs.quansight.org/blog/numpy-string-ufuncs
[289]Python 中的 pycache 文件夹是什么?: https://realpython.com/python-pycache/
[290]CPython 垃圾回收:内部机制和实现算法: https://blog.codingconfessions.com/p/cpython-garbage-collection-internals
[291]从零开始搭建自己的相似图片搜索引擎: https://juejin.cn/post/7377632288676839439
[292]使用 Pydantic Logfire 满足你的日志记录需求: https://kadermiyanyedi.medium.com/fire-up-your-logging-needs-with-logfire-6330d7a08dfe
[293]FastAPI 深度揭秘:高效 Web 开发指南: https://juejin.cn/column/7379166365972955146
[294]通过用 Python 实现 HTTP 服务器来理解它: https://muhammadraza.me/2024/building-http-server/
[295]我对“Excel 里的 Python”的看法: https://www.xlwings.org/blog/my-thoughts-on-python-in-excel
[296]用 Python 将卷曲文本的图像提取成 PDF: https://mzucker.github.io/2016/08/15/page-dewarping.html
[297]Python Celery 的缺陷: https://docs.hatchet.run/blog/problems-with-celery
[298]事件驱动的 Ansible,是什么、为什么以及如何使用?: https://anweshadas.in/event-driven-ansible-what-why-and-how/
[299]我国出版的 Python 教材几乎都有基本概念错误: https://zhuanlan.zhihu.com/p/703141066
[300]NumPy 2.0:一个重要的里程碑: https://blog.scientific-python.org/numpy/numpy2/
[301]2024 年 Python 语言峰会:Python 该采用日历版本吗?: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-should-python-adopt-calver.html
[302]2024 年 Python 语言峰会:我们应该让 pdb 变得更好吗?: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-pyrepl-new-pdb.html
[303]2024 年 Python 语言峰会:手机端上的 Python: https://pyfound.blogspot.com/2024/06/python-language-summit-2024-python-on-mobile.html
[304]Python 项目管理入门: https://martynassubonis.substack.com/p/python-project-management-primer
[305]在 Python 中连接字符串:一个“啊哈”时刻: https://berglyd.net/blog/2024/06/joining-strings-in-python/
[306]掌握上下文管理器,简化 Python 资源管理: https://coderlegion.com/361/mastering-context-manager-simplifying-resource-management-python
[307]如何从Pandas 迁移到 Polars: https://blog.jetbrains.com/pycharm/2024/06/how-to-move-from-pandas-to-polars/
[308]向 CPython 添加 JIT 编译器: https://lwn.net/SubscriberLink/977855/5daef5af6b2d4c1b/
[309]Debug 日志:CPython GH-120437: https://www.manjusaka.blog/posts/2024/06/19/a-live-debug-gh120437/
[310]使用 Rust 将 Python AST 的解析速度提高 20 倍: https://www.gauge.sh/blog/parsing-python-asts-20x-faster-with-rust
[311]Ruff:Rust 开发的 Python linter-formatter 的内部原理: https://compileralchemy.substack.com/p/ruff-internals-of-a-rust-backed-python
[312]最快运行原型的语言: https://news.alvaroduran.com/p/the-prototypes-language
[313]PEP-2026 提议 Python 采用日历版本号: https://peps.python.org/pep-2026/
[314]优化 Python 的路由和调度:一个新的开源求解器 Timefold: https://timefold.ai/blog/new-open-source-solver-python
[315]深入了解 Python 的集合数据结构: https://blog.codingconfessions.com/p/cpython-set-implementation
[316]使用 weakref 介绍 Python 的弱引用: https://martinheinz.dev/blog/112
[317]这就是软件开发现在的样子: https://newsletter.goodtechthings.com/p/this-is-what-software-development
[318]在命令行终端使用大语言模型: https://simonwillison.net/2024/Jun/17/cli-language-models/
[319]如何将 Python 包发布到 PyPI?: https://www.blog.pythonlibrary.org/2024/06/18/how-to-publish-a-python-package-to-pypi/
[320]基本 Python 项目设置: https://peateasea.de/basic-python-project-setup/
[321]用 Make 提升 Python 开发者体验: https://tech.target.com/blog/make-python-devex
[322]Notebooks 是代码中的麦当劳: https://yobibyte.github.io/notebooks.html
[323]花了 6 个月时间开发 LiveAPI 代理,我得到的 10 个经验教训: https://journal.hexmos.com/liveapi-engineering-lessons
[324]Polars 1.0 版本发布了!今后的计划?: https://pola.rs/posts/announcing-polars-1/
[325]Python 努力应对 Apple App Store 的拒绝: https://lwn.net/SubscriberLink/979671/4fb7c1827536d1ae/
[326]从 PDF 中提取数据的挑战,实用的 RAG 应用: https://unstract.com/blog/pdf-hell-and-practical-rag-applications/
[327]Python 中实现阶乘函数的十种方法: https://compucademy.net/factorial-function-in-python/
[328]Python 开发的最佳实践: https://www.stuartellis.name/articles/python-modern-practices/
[329]MicroPython 入门指南:(一)环境配置、Blink、部署: https://www.cnblogs.com/zhanggaoxing/p/18276038
[330]Python 使用 .NET 开发的类库来提高你的程序执行效率: https://www.cnblogs.com/weskynet/p/18251383
[331]我的 Python 代码是一种神经网络: https://blog.gabornyeki.com/2024-07-my-python-code-is-a-neural-network/
[332]Python 稀疏数组生态系统概述: https://labs.quansight.org/blog/sparse-array-ecosystem
[333]犯罪分子冒充“乐于助人”的 Stack Overflow 用户推送恶意软件: https://www.bleepingcomputer.com/news/security/cybercriminals-pose-as-helpful-stack-overflow-users-to-push-malware/
[334]使用 Prettier 对 Django 或 Jinja 模板作格式化: https://til.simonwillison.net/npm/prettier-django
[335]保持修改同步的两种方法:派生与测试: https://lukeplant.me.uk/blog/posts/keeping-things-in-sync-derive-vs-test/
[336]Python 的包管理工具真是多啊: https://dublog.net/blog/so-many-python-package-managers/
[337]用 Flask 和 HTMX 开发一个动态博客(第 1 篇): https://devtoys.io/2024/06/30/building-a-dynamic-blog-with-flask-and-htmx/
[338]PySkyWiFi:利用航空公司漏洞,实现免费上网: https://robertheaton.com/pyskywifi/
[339]让 Python 失去随机性: https://healeycodes.com/making-python-less-random
[340]ChatGPT 沙盒中 Linux 系统的秘密: https://incoherency.co.uk/blog/stories/chatgpt-linux.html
[341]我用 AI 自动将帽子戴到窗外的纽约人头上: https://dropofahat.zone/
[342]pip 与 uv:Streamlit Cloud 如何将程序加载时间缩短 55%?: https://blog.streamlit.io/python-pip-vs-astral-uv/
[343]讲座:CPython JIT (Chipy 2024)幻灯片和参考链接: https://jeff.glass/post/chipyjit2024/
[344]Python 包命名的最佳实践: https://joshcannon.me/2024/07/05/package-names.html
[345]系统调用的对决:Python 与 Ruby 的差异: https://blog.mattstuchlik.com/2024/07/07/syscall-showdown.html
[346]利用 GitHub Action 做爬虫,并将数据存在 SQLite 数据库中: https://jerrynsh.com/how-i-saved-scraped-data-in-an-sqlite-database-on-github/
[347]我从 35 年软件开发生涯中得到的 12 条经验教训: https://dev.jimgrey.net/2024/07/03/lessons-learned-in-35-years-of-making-software
[348]写给 15 年前的自己的 10 条编程建议: https://mbuffett.com/posts/programming-advice-younger-self/
[349]magic-animate:使用扩散模型的时间一致的人像动画: https://github.com/magic-research/magic-animate
[350]phpy:连通 Python 和 PHP 的生态系统: https://github.com/swoole/phpy
[351]insanely-fast-whisper:快到极致的 Whisper: https://github.com/Vaibhavs10/insanely-fast-whisper
[352]coffee:使用 AI 将 UI 的构建和迭代速度提高 10 倍: https://github.com/Coframe/coffee
[353]FastUI:更快构建更好的 UI: https://github.com/pydantic/FastUI
[354]mistral-src:Mistral AI 7B v0.1 模型的参考实现: https://github.com/mistralai/mistral-src
[355]netchecks:查验网络运行条件的工具: https://github.com/hardbyte/netchecks
[356]Pearl:Meta 推出的强化学习 AI 代理库: https://github.com/facebookresearch/Pearl
[357]gpt-fast:简单高效的 PyTorch 原生 Transformer 文本生成: https://github.com/pytorch-labs/gpt-fast
[358]The-Grand-Complete-Data-Science-Materials:数据科学的视频和材料: https://github.com/krishnaik06/The-Grand-Complete-Data-Science-Materials
[359]awesome-LLMs-In-China:中国的大模型: https://github.com/wgwang/awesome-LLMs-In-China
[360]msgspec:高性能的序列化和校验库: https://github.com/jcrist/msgspec
[361]feedi:打造个人的新闻聚合阅读器: https://github.com/facundoolano/feedi
[362]generative-ai-python:用 Google AI SDK,开发 Gemini 和 PaLM 应用: https://github.com/google/generative-ai-python
[363]python-guide-for-javascript-engineers:开源电子书《JavaScript工程师的Python指南》: https://github.com/luckrnx09/python-guide-for-javascript-engineers
[364]sqlmap:SQL 注入和渗透测试工具: https://github.com/sqlmapproject/sqlmap
[365]TikTokDownloader: TikTok 和抖音数据采集工具: https://github.com/JoeanAmier/TikTokDownloader
[366]Osprey:通过视觉指导微调实现对像素的理解: https://github.com/CircleRadon/Osprey
[367]django-cast:基于 Django 和 Wagtail 的博客/播客项目: https://github.com/ephes/django-cast
[368]Qexo:快速、强大且漂亮的 Hexo 编辑器: https://github.com/Qexo/Qexo
[369]project-based-learning:精选的基于项目的教程列表: https://github.com/practical-tutorials/project-based-learning
[370]Amphion:用于音频、音乐和语音生成的工具包: https://github.com/open-mmlab/Amphion
[371]nicegui:使用 Python 开发 Web 用户界面: https://github.com/zauberzeug/nicegui
[372]csvkit:用于转换和处理 CSV 的命令行工具: https://github.com/wireservice/csvkit
[373]evue:基于 html/css 的高性能 GUI 框架: https://github.com/scriptiot/evue
[374]JARVIS:自己的个人语音助手: https://github.com/AlexandreSajus/JARVIS
[375]Gooey:只需一行即可将几乎任何 Python 命令行程序转换为完整的 GUI 程序: https://github.com/chriskiehl/Gooey
[376]mod:Mojo 的包管理器工具: https://github.com/better-mojo/mod
[377]canopy:由 Pinecone 提供支持的 RAG 框架和上下文引擎: https://github.com/pinecone-io/canopy
[378]toogether-backend:Django REST 社交约会 APP 项目: https://github.com/damianstone/toogether-backend
[379]DouyinLiveRecorder: 可循环值守和多人录制的直播录制软件: https://github.com/ihmily/DouyinLiveRecorder
[380]StreamDiffusion:用于实时交互式生成的管道级解决方案: https://github.com/cumulo-autumn/StreamDiffusion
[381]sqlglot:SQL 解析器和转译器: https://github.com/tobymao/sqlglot
[382]texify:输出 LaTeX 和 Markdown 的数学 OCR 模型: https://github.com/VikParuchuri/texify
[383]talebook:一个简单的在线版个人书库: https://github.com/talebook/talebook
[384]watchfiles:简单快速的文件监听和代码重新加载: https://github.com/samuelcolvin/watchfiles
[385]hy:嵌入在 Python 中的 Lisp 方言: https://github.com/hylang/hy
[386]pyapp:Python 应用的运行时安装器: https://github.com/ofek/pyapp
[387]yarl:一个 URL 解析工具: https://github.com/aio-libs/yarl
[388]apispec:可插拔的 API 规范生成器,支持 OpenAPI 规范: https://github.com/marshmallow-code/apispec
[389]marshmallow:支持复杂对象与简单数据类型相互转换: https://github.com/marshmallow-code/marshmallow
[390]jake:在 GitHub 上轻松创建和部署自己的单链接网站: https://github.com/thevahidal/jake
[391]docflow:功能强大的文档管理 API,无缝上传、下载、组织、版本控制、共享: https://github.com/jiisanda/docflow
[392]auto_job__find__chatgpt__rpa:基于 ChatGPT 的自动投简历助手: https://github.com/Frrrrrrrrank/auto_job__find__chatgpt__rpa
[393]oshit:放在命令行终端的 Hacker News: https://github.com/davep/oshit
[394]mixtral-offloading:在 Colab 或个人电脑上运行 Mixtral-8x7B 模型: https://github.com/dvmazur/mixtral-offloading
[395]RecoverPy:以交互方式从终端查找和恢复已删除或覆盖的文件: https://github.com/PabloLec/RecoverPy
[396]MobileVLM:美团开源的移动设备视觉语言助手: https://github.com/Meituan-AutoML/MobileVLM
[397]ydata-profiling:用于 Pandas 和 Spark DataFrame 的数据分析: https://github.com/ydataai/ydata-profiling
[398]pdfsyntax:检查和修改 PDF 文件内部结构: https://github.com/desgeeko/pdfsyntax
[399]harlequin:终端里的 SQL IDE: https://github.com/tconbeer/harlequin
[400]litellm:使用 OpenAI 格式调用所有 LLM API: https://github.com/BerriAI/litellm
[401]unstructured:用于 AI 模型的非结构化数据预处理工具: https://github.com/Unstructured-IO/unstructured
[402]chatgpt-on-wechat: 基于大模型搭建的聊天机器人,支持微信、企业微信、公众号、飞书: https://github.com/zhayujie/chatgpt-on-wechat
[403]whisperX:具有单词级时间戳的自动语音识别: https://github.com/m-bain/whisperX
[404]42 道在线的 Python 编程练习题: https://inventwithpython.com/pythongently/
[405]mealie:自托管的食谱管理和膳食计划项目: https://github.com/mealie-recipes/mealie
[406]guardrails:给大语言模型添加护栏: https://github.com/guardrails-ai/guardrails
[407]chainlit:在几分钟内构建 Python LLM 应用程序: https://github.com/Chainlit/chainlit
[408]functime:用 Polars 构建的时间序列机器学习: https://github.com/functime-org/functime
[409]niquests:使用 HTTP/3、HTTP/2,支持异步的 requests: https://github.com/jawah/niquests
[410]slotscheck:确保你的__slots__正常工作: https://github.com/ariebovenberg/slotscheck/
[411]panel:强大的数据探索和 Web 应用框架: https://github.com/holoviz/panel
[412]QAnything:基于任何东西的问答: https://github.com/netease-youdao/QAnything
[413]Bert-VITS2-ext: 基于 Bert-VITS2 做的表情、动画测试: https://github.com/see2023/Bert-VITS2-ext
[414]weread-exporter: 将微信读书中的书籍导出成 epub、pdf、mobi 等格式: https://github.com/drunkdream/weread-exporter
[415]leetcode-solution:用 Python 解各种 LeetCode 问题: https://github.com/hogan-tech/leetcode-solution
[416]CapsWriter-Offline: CapsWriter 离线版,好用的 PC 端语音输入工具: https://github.com/HaujetZhao/CapsWriter-Offline
[417]surya:任何语言的准确行级文本检测和识别 (OCR): https://github.com/VikParuchuri/surya
[418]GPT-SoVITS:1分钟的语音也可训练一个好的 TTS 模型: https://github.com/RVC-Boss/GPT-SoVITS
[419]trt-llm-rag-windows:使用 TensorRTLLM 在 Windows 上创建 RAG 聊天机器人: https://github.com/NVIDIA/trt-llm-rag-windows
[420]LangGPT:让每个人都能成为提示词专家: https://github.com/EmbraceAGI/LangGPT
[421]core:可用于生产的 AI 助手框架: https://github.com/cheshire-cat-ai/core
[422]van-gonography:将任意类型的文件隐藏在一张图像中: https://github.com/JoshuaKasa/van-gonography
[423]mpmath:任意精度的浮点数运算: https://github.com/mpmath/mpmath
[424]sqlite-worker:在多线程应用中轻松管理 SQLite: https://github.com/roshanlam/sqlite-worker
[425]granian:用于 Python 程序的 Rust HTTP server: https://github.com/emmett-framework/granian
[426]fasthx:FastAPI + HTMX 开发框架: https://github.com/volfpeter/fasthx
[427]ml-engineering:机器学习工程开源书籍: https://github.com/stas00/ml-engineering
[428]sglang:专为大型语言模型设计的结构化生成语言: https://github.com/sgl-project/sglang
[429]chatgpt_telegram_bot:ChatGPT Telegram 机器人,无限制用 GPT-4 : https://github.com/father-bot/chatgpt_telegram_bot
[430]HuixiangDou:基于 LLM 的领域知识助手: https://github.com/InternLM/HuixiangDou
[431]ComfyUI-InstantID:ComfyUI 的 InstantID 的非官方实现: https://github.com/ZHO-ZHO-ZHO/ComfyUI-InstantID
[432]ComfyUI-PhotoMaker-ZHO:ComfyUI 的 PhotoMaker 的非官方实现: https://github.com/ZHO-ZHO-ZHO/ComfyUI-PhotoMaker-ZHO
[433]excelCPU:用 Excel 实现的 16 位 CPU 和相关文件: https://github.com/InkboxSoftware/excelCPU
[434]whenever:万无一失的 Python 日期时间: https://github.com/ariebovenberg/whenever
[435]DeepSeek-Coder:让代码自己编写: https://github.com/deepseek-ai/deepseek-coder/
[436]fastcrud:FastAPI 的异步 CRUD 操作: https://github.com/igorbenav/fastcrud
[437]leptonai:简化 AI 服务构建的 Pythonic 框架: https://github.com/leptonai/leptonai
[438]gpt-newspaper:用 GPT 创建个性化报纸: https://github.com/assafelovic/gpt-newspaper
[439]apprise:几乎适用于所有平台的通知推送: https://github.com/caronc/apprise
[440]procrastinate:基于 PostgreSQL 的 Python 任务队列: https://github.com/procrastinate-org/procrastinate
[441]flent:灵活的网络基准测试工具: https://github.com/tohojo/flent
[442]urllib3:新版本支持在浏览器发起 HTTP 请求: https://github.com/urllib3/urllib3/releases/tag/2.2.0
[443]gnuplotlib:基于 gnuplot 的 numpy 绘图后端: https://github.com/dkogan/gnuplotlib
[444]history_rag:用 RAG 搭建中国历史问答应用: https://github.com/wxywb/history_rag
[445]uv:性能极快的 Python 包安装和解析器: https://github.com/astral-sh/uv
[446]sqlite-web:基于 Web 的 SQLite 数据库工具: https://github.com/coleifer/sqlite-web
[447]celery-exporter:导出 Celery 指标用于 Prometheus: https://github.com/danihodovic/celery-exporter
[448]pyupgrade:自动升级 Python 较新版本的语法 : https://github.com/asottile/pyupgrade
[449]ollama-python: Ollama Python 库: https://github.com/ollama/ollama-python
[450]web2pdf:将网页转换为 PDF 的 CLI: https://github.com/dvcoolarun/web2pdf
[451]natural-sql:文本生成 SQL 的大语言模型: https://github.com/cfahlgren1/natural-sql
[452]rawdog:在 CLI 中自动生成并执行 Python 脚本: https://github.com/AbanteAI/rawdog
[453]UFO:基于 UI 与 Windows 系统交互的 AI 代理: https://github.com/microsoft/UFO
[454]toolong:查看、跟踪、合并和搜索日志文件(以及 JSONL)的终端应用: https://github.com/Textualize/toolong
[455]Owl:在本地运行的个人可穿戴 AI: https://github.com/OwlAIProject/Owl
[456]hyperdiv:用 Python 构建响应式 Web UI: https://github.com/hyperdiv/hyperdiv
[457]fabric:使用 AI 增强人类: https://github.com/danielmiessler/fabric
[458]ingestr:用单个命令在任何数据库间无缝复制数据: https://github.com/bruin-data/ingestr
[459]justpath:在 Windows 和 Linux 上检查和优化 PATH 环境变量: https://github.com/epogrebnyak/justpath
[460]mountaineer:用于 Python 和 React 的自带电池的 Web 框架: https://github.com/piercefreeman/mountaineer
[461]generate:一个 API 访问国内外大模型平台: https://github.com/wangyuxinwhy/generate
[462]StringZilla:将 C、C++、Python、Rust 和 Swift 的字符串速度提高 10 倍: https://github.com/ashvardanian/StringZilla
[463]DrissionPage: 网页自动化工具,能控制浏览器,也能收发数据包: https://github.com/g1879/DrissionPage
[464]Daft:Rust 开发的面向云的分布式 Python DataFrame: https://github.com/Eventual-Inc/Daft
[465]magika:使用深度学习来检测文件内容的类型: https://github.com/google/magika
[466]frappe:低代码 Web 框架,使用 Python 和 Javascript: https://github.com/frappe/frappe
[467]Umi-OCR: 开源、免费的离线 OCR 软件,支持截屏/批量导入图片: https://github.com/hiroi-sora/Umi-OCR
[468]xonsh:Python 开发的跨平台的类 Unix 的 shell: https://github.com/xonsh/xonsh
[469]umami-python:Python 开发的 Umami 分析客户端: https://github.com/mikeckennedy/umami-python
[470]returns:让函数返回有意义、类型化且安全的内容: https://github.com/dry-python/returns
[471]pyquest:一系列的 Python 编程教程: https://github.com/ivnvxd/pyquest
[472]flect:用于构建全栈 Web 应用的 Python 框架: https://github.com/Chaoyingz/flect
[473]docker-android:Docker 里的 Android,支持 noVNC 和视频录制: https://github.com/budtmo/docker-android
[474]anthropic-sdk-python:调用 Claude 3 等大模型: https://github.com/anthropics/anthropic-sdk-python
[475]PhotoMaker:制造逼真的人物照片: https://github.com/TencentARC/PhotoMaker
[476]metube:自托管的 YouTube 下载器(youtube-dl/yt-dlp 的 Web UI): https://github.com/alexta69/metube
[477]cachetools:可扩展的内存化集合和装饰器: https://github.com/tkem/cachetools
[478]speedtest-cli:使用 speedtest.net 测试网络带宽的命令行界面: https://github.com/sivel/speedtest-cli
[479]Open-Sora-Plan:旨在重现 Sora(Open AI T2V模型): https://github.com/PKU-YuanGroup/Open-Sora-Plan
[480]minisora:旨在探索 Sora 的实施路径和未来发展方向: https://github.com/mini-sora/minisora
[481]flet:用 Python 开发实时的 Web、移动端和桌面程序: https://github.com/flet-dev/flet
[482]ss-python:Python 项目模板,涵盖整个开发生命周期: https://github.com/serious-scaffold/ss-python
[483]dukpy:用于 Python 简化版 JavaScript 解释器: https://github.com/amol-/dukpy
[484]PyKidos:一个 Python 编程练习网站: https://pykidos.github.io/
[485]hatchet:分布式的容错的任务队列: https://github.com/hatchet-dev/hatchet
[486]full-stack-fastapi-template:全栈的现代 Web 项目模板: https://github.com/tiangolo/full-stack-fastapi-template
[487]bython:带花括号的 Python: https://github.com/mathialo/bython
[488]treq:构建在 Twisted 上的 HTTP 请求库: https://github.com/twisted/treq
[489]JavSP:汇总多站点数据的视频元数据刮削器: https://github.com/Yuukiy/JavSP
[490]botasaurus:强大的网络爬虫框架: https://github.com/omkarcloud/botasaurus
[491]pywebview:用 JavaScript、HTML 和 CSS 构建 GUI: https://github.com/r0x0r/pywebview
[492]Paper-Piano:在白纸上弹钢琴: https://github.com/Mayuresh1611/Paper-Piano
[493]grok-1:马斯克开源的 Grok: https://github.com/xai-org/grok-1
[494]DarkGPT:基于 GPT-4-200K,查询泄露的数据库: https://github.com/luijait/DarkGPT
[495]structlog:简单、强大、快速的 Python 日志记录库: https://github.com/hynek/structlog
[496]pydumpling: 针对 Python 的异常调试器: https://github.com/cocolato/pydumpling
[497]can_ada:快速且符合规范的 URL 解析库: https://github.com/tktech/can_ada
[498]Mindgraph:使用 AI 生成和查询不断扩展的知识图谱: https://github.com/yoheinakajima/mindgraph
[499]speechbrain:基于 PyTorch 的语音工具包: https://github.com/speechbrain/speechbrain
[500]python-anyconfig:以通用 API 加载和转储各种格式的配置文件: https://github.com/ssato/python-anyconfig
[501]Llama-Chinese: Llama 中文社区,最好的中文 Llama 大模型: https://github.com/LlamaFamily/Llama-Chinese
[502]python-for-android:将 Python 程序变成 Android APK: https://github.com/kivy/python-for-android
[503]img2img-turbo:Stable Diffusion turbo 实现的 sketch2image、day2night 等: https://github.com/GaParmar/img2img-turbo
[504]ludic:用纯 Python 构建动态 HTML 页面的轻量级框架: https://github.com/paveldedik/ludic
[505]mojo:Mojo 编程语言开源了: https://github.com/modularml/mojo
[506]Suno-API:基于 Python 和 FastAPI 的非官方 Suno API: https://github.com/SunoAI-API/Suno-API
[507]blacken-docs:对文档中的 Python 代码块上运行“black”: https://github.com/adamchainz/blacken-docs
[508]pathvalidate:用于规范化/验证字符串,例如文件名和文件路径: https://github.com/thombashi/pathvalidate
[509]LunarLink: 基于HttpRunner + Django + Vue + Element UI 的接口自动化测试平台: https://github.com/tahitimoon/LunarLink
[510]leaping:轻量级的 Python 测试调试器: https://github.com/leapingio/leaping
[511]keepyourmouthshut:用 AI 能力录制播客: https://github.com/rajtilakjee/keepyourmouthshut
[512]MoneyPrinterTurbo:利用AI大模型,一键生成高清短视频: https://github.com/harry0703/MoneyPrinterTurbo
[513]AIOS:LLM 代理操作系统: https://github.com/agiresearch/AIOS
[514]LaVague:使用大行动模型框架实现自动化: https://github.com/lavague-ai/LaVague
[515]Gmeek:一个完全使用 Github 的博客框架: https://github.com/Meekdai/Gmeek
[516]posthog:提供开源产品分析、会话录制、功能标记和 A/B 测试: https://github.com/PostHog/posthog
[517]devika:Cognition AI 的 Devin 的开源替代品: https://github.com/stitionai/devika
[518]OpenDevin:Devin 的开源实现: https://github.com/OpenDevin/OpenDevin
[519]SWE-agent:可修复 Github 问题的 AI 软件工程师: https://github.com/princeton-nlp/SWE-agent
[520]openui:描述你想要的 UI,它实时帮你生成: https://github.com/wandb/openui
[521]ragflow:基于深度文档理解的开源 RAG 引擎: https://github.com/infiniflow/ragflow
[522]zibai:高性能的纯 Python WSGI 服务器: https://github.com/abersheeran/zibai
[523]podgenai:GPT-4 制作有声读物/播客 mp3 生成器: https://github.com/impredicative/podgenai
[524]qiling:真正可检测的二进制仿真框架: https://github.com/qilingframework/qiling
[525]maxtext:谷歌推出的简单、高性能及可扩展的 JaxLLM: https://github.com/google/maxtext
[526]nava:在 Python 中播放声音: https://github.com/openscilab/nava
[527]MuseV:无限长度和高保真的虚拟人视频生成: https://github.com/TMElyralab/MuseV
[528]restai:一个 AIaaS(AI 即服务)开源平台: https://github.com/apocas/restai
[529]open-interpreter:计算机上的自然语言界面: https://github.com/OpenInterpreter/open-interpreter
[530]narwhals:Polars、pandas、cuDF、Modin 的轻量级可扩展兼容层: https://github.com/MarcoGorelli/narwhals
[531]mantis:可自动发现、侦察和扫描漏洞的安全框架: https://github.com/PhonePe/mantis
[532]FreeAskInternet:免费私有且本地运行的搜索聚合器与答案生成: https://github.com/nashsu/FreeAskInternet
[533]PyCharm 博客总结的一系列 Django 学习资源: https://blog.jetbrains.com/pycharm/2024/04/django-learning-resources/
[534]great-tables:用 Python 生成信息丰富的精美表格 : https://github.com/posit-dev/great-tables
[535]jiaTansSSHAgent:实现 XZ sshd 某些后门功能: https://github.com/blasty/JiaTansSSHAgent
[536]docx2python:提取 docx 的页眉、页脚、文本、脚注、尾注、属性和图像: https://github.com/ShayHill/docx2python
[537]WechatMoments:微信朋友圈导出工具: https://github.com/tech-shrimp/WechatMoments
[538]low_cost_robot:超低成本实现机械臂: https://github.com/AlexanderKoch-Koch/low_cost_robot
[539]drawpyo:用 Python 生成 Draw.io 图表: https://github.com/MerrimanInd/drawpyo
[540]drawdb:免费直观的在线数据库设计工具和 SQL 生成器: https://github.com/drawdb-io/drawdb
[541]pylyzer:快速的 Python 静态代码分析器和语言服务器: https://github.com/mtshiba/pylyzer
[542]anthropic-cookbook:一些有趣而有效的使用 Claude 的方法: https://github.com/anthropics/anthropic-cookbook
[543]Flowmium:用 Rust 写的 Python 工作流编排器: https://github.com/RainingComputers/Flowmium
[544]github2file:从 Github 下载和处理文件: https://github.com/cognitivecomputations/github2file
[545]Python 知识备忘录: https://kieranholland.com/best-python-cheat-sheet/
[546]DouZero:通过自玩深度强化学习掌握斗地主: https://github.com/kwai/DouZero
[547]dashboard-icons:仪表板图标资源: https://github.com/walkxcode/dashboard-icons
[548]newspaper4k:从新闻网站提取文章、标题和元数据: https://github.com/AndyTheFactory/newspaper4k
[549]translateLocally:在本机上用 LLM 快速安全地翻译: https://github.com/XapaJIaMnu/translateLocally
[550]constable:将打印直接插入 AST 进行状态调试: https://github.com/saurabh0719/constable
[551]TextBlob:情感分析、词性标记、名词短语提取、翻译等: https://github.com/sloria/TextBlob
[552]wewe-rss:生成微信公众号 RSS,支持私有化部署: https://github.com/cooderl/wewe-rss
[553]llama3:Meta Llama 3 的官方仓库: https://github.com/meta-llama/llama3
[554]llama3-Chinese-chat:Llama3 中文仓库,各种聚合资料: https://github.com/CrazyBoyM/llama3-Chinese-chat
[555]reader:将 URL 转换为对 LLM 友好的文本: https://github.com/jina-ai/reader
[556]tasktiger:基于 Redis 的 Python 任务队列: https://github.com/closeio/tasktiger
[557]utt:用 Python 编写的简易命令行时间跟踪器: https://github.com/larose/utt
[558]simone:将 YouTube 视频转换为文章进行发布: https://github.com/rajtilakjee/simone
[559]h11:用纯 Python 实现的 HTTP/1.1 库: https://github.com/python-hyper/h11
[560]browser-hub:浏览器包装器,可运行多个浏览器实例: https://github.com/amirkarimi/browser-hub
[561]lingua-py:极准确的自然语言检测库: https://github.com/pemistahl/lingua-py
[562]photo-similarity-search:基于苹果芯片的照片相似度 Web 应用: https://github.com/harperreed/photo-similarity-search
[563]Windrecorder:记录屏幕内容,实现记忆搜索: https://github.com/yuka-friends/Windrecorder
[564]logfire:用于 Python 的可观测性工具: https://github.com/pydantic/logfire
[565]pyinfra:用 Python 实现基础设施自动化: https://github.com/pyinfra-dev/pyinfra
[566]pipxu:使用 UV 在隔离环境中安装和运行 Python 程序: https://github.com/bulletmark/pipxu
[567]tkforge:在 Figma 中拖放创建 Python GUI: https://github.com/Axorax/tkforge
[568]TagStudio:文件和照片管理系统: https://github.com/TagStudioDev/TagStudio
[569]coredumpy:保存崩溃的站点以作事后调试: https://github.com/gaogaotiantian/coredumpy
[570]plane:开源的 JIRA、Linear 和 Asana 替代品: https://github.com/makeplane/plane
[571]Scrapegraph-ai:基于 AI 的 Python 抓取工具: https://github.com/VinciGit00/Scrapegraph-ai
[572]tv:自动收集 IPv4 酒店电视直播源: https://github.com/ssili126/tv
[573]netprobe_lite:用 Python 开发的网络性能测试工具: https://github.com/plaintextpackets/netprobe_lite
[574]dangerzone:将有害的 PDF、office 文档或图像转换为安全的 PDF: https://github.com/freedomofpress/dangerzone
[575]MS-DOS:MS-DOS 1.25、2.0 和 4.0 的源代码: https://github.com/microsoft/MS-DOS
[576]pywinassistant:用自然语言控制 Windows 用户界面: https://github.com/a-real-ai/pywinassistant
[577]chinese-calendar:判断一天是不是法定节假日/工作日: https://github.com/LKI/chinese-calendar
[578]Oven:探索 Python PyPI 包: https://pyoven.org/
[579]tetos:适用于多种 TTS 服务的统一接口: https://github.com/frostming/tetos
[580]relax-py:又一个 Python Web 框架: https://github.com/crpier/relax-py
[581]哈佛大学 2024 年 CS50 线上课程: https://cs50.harvard.edu/x/2024/
[582]portr:专为团队设计的开源的 ngrok 替代方案: https://github.com/amalshaji/portr
[583]py-compress-compare:对比分析 zlib、LZ4、Brotli 和 Zstandard: https://github.com/dhilipsiva/py-compress-compare
[584]pyspread:用 Python 开发的电子表格,可支持 Python 代码: https://pyspread.gitlab.io/
[585]PgQueuer:基于 PostgreSQL 的任务队列库: https://github.com/janbjorge/PgQueuer
[586]你用人工智能做过的最实用的事情是什么?: https://www.reddit.com/r/ArtificialInteligence/comments/1ceaftk/whats_the_most_practical_thing_you_have_done_with/
[587]The-Python-Graph-Gallery:数百个用 Python 绘制的图表: https://github.com/holtzy/The-Python-Graph-Gallery
[588]parler-tts:高质量的 TTS 模型: https://github.com/huggingface/parler-tts
[589]UXsim:道路上的车辆交通流模拟器: https://github.com/toruseo/UXsim
[590]Quads:基于四叉树的计算机艺术: https://github.com/fogleman/Quads
[591]bilibot:用哔哩哔哩用户评论微调的本地聊天机器人: https://github.com/linyiLYi/bilibot
[592]pyaction:带有 Python、git 和 Github CLI 的 Docker 容器: https://github.com/cicirello/pyaction
[593]firecrawl:将整个网站变成 LLM-ready 的 markdown: https://github.com/mendableai/firecrawl
[594]plotille:使用盲文点在终端中绘图: https://github.com/tammoippen/plotille
[595]petl:Python 提取、转换和加载数据表: https://github.com/petl-developers/petl
[596]FunClip:视频语音识别和剪辑工具,集成 AI 剪辑功能: https://github.com/alibaba-damo-academy/FunClip
[597]map-machine:OpenStreetMap 的 Python 渲染器: https://github.com/enzet/map-machine
[598]IC-Light:给图片加上打光照明: https://github.com/lllyasviel/IC-Light
[599]用于处理 Excel 的 Python 资源: https://www.python-excel.org/
[600]yen:Python 虚拟环境管理工具,无需预装 Python: https://github.com/tusharsadhwani/yen
[601]Tensor-Puzzles:21 个张量谜题: https://github.com/srush/Tensor-Puzzles
[602]dishka:依赖注入框架: https://github.com/reagento/dishka
[603]hstream:将 Python 脚本转换为 Web 应用: https://github.com/conradbez/hstream
[604]cover-agent:AI 自动生成测试,提升代码覆盖率: https://github.com/Codium-ai/cover-agent
[605]pygments:用 Python 开发的通用型语法高亮工具: https://github.com/pygments/pygments
[606]hashquery:在数据仓库中定义和查询 BI 模型: https://github.com/hashboard-hq/hashquery
[607]Python 有哪些指标监测库?: https://news.ycombinator.com/item?id=40104427
[608]stamina:可用于生产的 Python 重试库: https://github.com/hynek/stamina
[609]piku:支持对自己的服务器作 git 推送部署: https://github.com/piku/piku
[610]mql:用自然语言输入生成 SQL 查询: https://github.com/shurutech/mql
[611]llama-fs:基于 llama 3 的自组织文件系统: https://github.com/iyaja/llama-fs
[612]orjson:快速准确的 JSON 库,支持数据类、日期时间和 Numpy: https://github.com/ijl/orjson
[613]asyncssh:在 asyncio 上提供 SSHv2 协议的异步客户端和服务器: https://github.com/ronf/asyncssh
[614]ipyblender-experimental:Jupyter 中引入 Blender: https://github.com/kolibril13/ipyblender-experimental
[615]searxng:免费的互联网元搜索引擎,汇总各种搜索服务和数据库的结果: https://github.com/searxng/searxng
[616]rio:纯 Python 的 Web 开发框架,无需 JavaScript、HTML 和 CSS: https://github.com/rio-labs/rio
[617]buku:个人的文本迷你网络: https://github.com/jarun/buku
[618]resume-builder:纯 Python 开发的简历生成工具: https://github.com/koek67/resume-builder
[619]more-itertools:比 itertools 丰富的可迭代对象操作: https://github.com/more-itertools/more-itertools
[620]tach:强制实施模块化、解耦的包架构: https://github.com/gauge-sh/tach
[621]Zango:构建企业级应用/微服务的 Python Web 框架: https://github.com/Healthlane-Technologies/Zango
[622]pdm:支持最新 PEP 标准的 Python 包和依赖项管理工具: https://github.com/pdm-project/pdm
[623]Think Python 第三版(免费在线)—Think Python, 3rd edition: https://allendowney.github.io/ThinkPython/
[624]关于音乐处理的 Python 基础笔记: https://www.audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html
[625]ChatTTS:用于日常对话的生成语音模型: https://github.com/2noise/ChatTTS
[626]几个与 ChatTTS 相关的项目: https://xiaobot.net/p/python_weekly
[627]koheesio:构建高效数据管道的 Python 框架: https://github.com/Nike-Inc/koheesio
[628]groqbook:使用 Groq 和 Llama3 在几秒内生成整本书: https://github.com/Bklieger/groqbook
[629]cachebox:用 Rust 开发的高性能 Python 缓存库: https://github.com/awolverp/cachebox
[630]mesop:Google 开源基于 Python 的 UI 框架: https://github.com/google/mesop
[631]Qwen2:阿里云开源的大模型系列: https://github.com/QwenLM/Qwen2
[632]RSS-Translator:简洁可自部署的 RSS 翻译器: https://github.com/rss-translator/RSS-Translator
[633]farfalle:AI 搜索引擎, 用本地或云 LLM 自托管: https://github.com/rashadphz/farfalle
[634]chsrc:全平台命令行换源工具: https://github.com/RubyMetric/chsrc
[635]WeasyPrint:非常棒的工具,将 Web 生成 PDF 文档: https://github.com/Kozea/WeasyPrint
[636]oxo:现代的安全扫描编排器: https://github.com/Ostorlab/oxo
[637]jupyterlab-desktop:JupyterLab 桌面版,基于 Electron: https://github.com/jupyterlab/jupyterlab-desktop
[638]teo:模式驱动的 Web 服务端框架: https://github.com/teodevgroup/teo
[639]aiosql:Python 中的简单 SQL: https://github.com/nackjicholson/aiosql
[640]thread:AI 驱动的 Python 笔记本,使用 React 构建: https://github.com/squaredtechnologies/thread
[641]OpenRecall:Windows Recall 的开源替代: https://github.com/openrecall/openrecall
[642]requests-futures:使用 Futures 实现的异步 Python HTTP Requests: https://github.com/ross/requests-futures
[643]websocket-client:Python 的 WebSocket 客户端: https://github.com/websocket-client/websocket-client
[644]Freeway:WiFi 渗透测试与审计工具: https://github.com/FLOCK4H/Freeway
[645]cibuildwheel:以最少的配置为所有平台构建 Python wheel: https://github.com/pypa/cibuildwheel
[646]超过 6000 份免费的速查表: https://cheatography.com/
[647]pdf-to-podcast:将任何 PDF 转换为播客节目: https://github.com/knowsuchagency/pdf-to-podcast
[648]prettypretty:漂亮的终端颜色库: https://github.com/apparebit/prettypretty
[649]django-render:使用 Django 和 React 构建用户友好的应用: https://github.com/kaedroho/django-render
[650]holmesgpt:GPT 支持的 DevOps 助手: https://github.com/robusta-dev/holmesgpt/
[651]labelme:用 Python 作图像多边形标注: https://github.com/labelmeai/labelme
[652]aurora:Python 实现的快速、可扩展的静态站点生成器: https://github.com/capjamesg/aurora
[653]httpstat:使 CURL 统计变得简单: https://github.com/reorx/httpstat
[654]writer-framework:用于创建 AI 应用的全栈框架: https://github.com/writer/writer-framework
[655]surya:OCR、布局分析、顺序读取、90+ 种语言的行检测: https://github.com/VikParuchuri/surya
[656]MiniCPM-Llama3-V 2.5:手机上媲美 GPT-4V 的多模态 LLM: https://github.com/OpenBMB/MiniCPM-V
[657]pyod:用于异常值检测 Python 库: https://github.com/yzhao062/pyod
[658]warp:用于高性能 GPU 仿真和图形的 Python 框架: https://github.com/NVIDIA/warp
[659]Your-Journey-To-Fluent-Python:你的流畅的 Python 之旅: https://github.com/pro1code1hack/Your-Journey-To-Fluent-Python
[660]llm:从命令行访问大语言模型: https://github.com/simonw/llm
[661]lmdocs:使用 LLM 生成 Python 项目的帮助文档: https://github.com/MananSoni42/lmdocs
[662]make-python-devex:使用 Make、Homebrew、pyenv、poetry 等工具的示例: https://github.com/target/make-python-devex
[663]vulture:查找无效的 Python 代码: https://github.com/jendrikseipp/vulture
[664]CleanMyWechat: 自动删除 PC 端微信缓存数据: https://github.com/blackboxo/CleanMyWechat
[665]wxauto:Windows 版微信自动化,可发送/接收消息,简单微信机器人: https://github.com/cluic/wxauto
[666]youdaonote-pull:一键导出/备份有道云笔记的所有笔记: https://github.com/DeppWang/youdaonote-pull
[667]reladiff:跨数据库对大型数据集作高性能比对: https://github.com/erezsh/reladiff
[668]hrms:开源人力资源和薪资管理软件: https://github.com/frappe/hrms
[669]burr:构建能够做出决策的应用(聊天机器人、代理、仿真等): https://github.com/DAGWorks-Inc/burr
[670]thread:AI 驱动的 Jupyter Notebook: https://github.com/squaredtechnologies/thread
[671]graphrag:基于图形的模块化 RAG 系统: https://github.com/microsoft/graphrag
[672]puepy:基于 PyScript 的 Python+Webassembly 前端框架: https://github.com/kkinder/puepy
[673]psqlpy:Rust 写的异步 Python PostgreSQL 驱动: https://github.com/qaspen-python/psqlpy
[674]pretzelai:Jupyter Notebook 们的现代替代品: https://github.com/pretzelai/pretzelai
[675]meet-libai: 构建李白知识图谱,训练 AI 李白智能体: https://github.com/BinNong/meet-libai
[676]flpc:Rust 开发的 Python 正则表达式库: https://github.com/itsmeadarsh2008/flpc
[677]Taiwan-LLM:台湾繁体中文 LLM: https://github.com/MiuLab/Taiwan-LLM
[678]ttkbootstrap:tkinter 的增强主题,受 Bootstrap 启发的现代平面风格: https://github.com/israel-dryer/ttkbootstrap
[679]bunkerweb:开源的 Web 应用防火墙(WAF): https://github.com/bunkerity/bunkerweb
[680]AI-Math-Notes:交互式的 AI 数学黑板: https://github.com/ayushpai/AI-Math-Notes
[681]cookiecutter-django:快速启动生产就绪的 Django 项目: https://github.com/cookiecutter/cookiecutter-django
[682]Linly-Talker:数字化身系统,结合大语言模型与视觉模型: https://github.com/Kedreamix/Linly-Talker
[683]dnstwist:检测域名的钓鱼攻击、拼写错误抢注和品牌冒充: https://github.com/elceef/dnstwist
[684]posting:位于终端里的现代 API 客户端: https://github.com/darrenburns/posting
[685]filesystem_spec:Python 文件系统应遵守的规范: https://github.com/fsspec/filesystem_spec
[686]babel:Python 国际化库: https://github.com/python-babel/babel
[687]fastapi-docker-temp:基于 FastAPI 的最小化 Docker 项目模版: https://github.com/liseami/fastapi-docker-temp
[688]crawlee-python:Python Web 抓取和浏览器自动化库: https://github.com/apify/crawlee-python
[689]django-sql-explorer:通过 SQL 查询,在整个公司内轻松共享数据: https://github.com/explorerhq/django-sql-explorer
[690]pyxel:Python 的像素风游戏开发引擎: https://github.com/kitao/pyxel
[691]0xtools:分析 Linux 系统上应用的性能: https://github.com/tanelpoder/0xtools
[692]Secator:渗透测试人员的瑞士军刀: https://github.com/freelabz/secator
[693]rss2newsletter:将 RSS/Atom feed 转换为邮件通讯: https://github.com/ElliotKillick/rss2newsletter
[694]vectorlite:SQLite 的快速可调节的向量搜索扩展: https://github.com/1yefuwang1/vectorlite
[695]LivePortrait:让人像肖像栩栩如生: https://github.com/KwaiVGI/LivePortrait
[696]PSF 官宣一档播客节目:Python 的隐藏人物: https://pyfound.blogspot.com/2023/12/announcing-hidden-figures-of-python-pypodcats.html
[697]Talk Python To Me #442 使用 msgspec 作超高速的消息解析: https://talkpython.fm/episodes/show/442/ultra-high-speed-message-parsing-with-msgspec
[698]DjangoCon US 2023 的视频列表,60 个视频: https://www.youtube.com/playlist?list=PL2NFhrDSOxgX41jqYSi0HmO9Wsf6WDSmf
[699]PyConChina 2023 的演讲视频: https://space.bilibili.com/474764697/video
[700]Episode #184:PyCoder's Weekly 的 2023 年总结: https://realpython.com/podcasts/rpp/184/
[701]Requests vs Httpx vs Aiohttp 该选哪一个呢?: https://www.youtube.com/watch?v=OPyoXx0yA0I
[702]为什么 Python, Go, Rust, Kotlin 没有三元运算符?: https://www.bilibili.com/video/BV1v64y1J7hS
[703]捕蛇者说 Ep 44. 与 Tualatrix 聊聊独立开发使用的技术栈: https://www.xiaoyuzhoufm.com/episode/65945c8c1e736aa25c935885
[704]给 Pythonistas 的 Rust 编程入门教程: https://www.youtube.com/watch?v=MoqtsYLGCC4
[705]Meta 喜欢 Python: https://engineering.fb.com/2024/02/12/developer-tools/meta-loves-python/
[706]Talk Python To Me #449:使用 FastUI 构建 UI: https://talkpython.fm/episodes/show/449/building-uis-in-python-with-fastui
[707]带大家感受一下没有 GIL 的 CPython: https://www.bilibili.com/video/BV1im411R7UB
[708]ruff、uv 和 Astral:Python 工具链,使用 Rust 提速: https://podcast.pythontest.com/episodes/ruff-astral-uv-charlie-marsh
[709]使用 Nextjs、Tailwind 和 Django 克隆一个全栈的 Airbnb: https://www.youtube.com/playlist?list=PLpyspNLjzwBnP-906FBRP5qzB4YXjMvnT
[710]Django Brew:一档新的 Python 播客: https://djangobrew.com/episodes/14650534-episode-1-fried-green-introverts
[711]使用 Django、Channels 和 HTMX 克隆一个流式 ChatGPT: https://www.youtube.com/watch?v=8JSiiPW4S0A
[712]2024 年学习数据科学的系列视频: https://www.youtube.com/playlist?list=PLTsu3dft3CWiow7L7WrCd27ohlra_5PGH
[713]2024 年菲律宾 PyCon 演讲视频列表: https://www.youtube.com/playlist?list=PLCBCxsuKTqkDBFLU2tWQvB645sNtedQbb
[714]2024 年构建大语言模型的小指南: https://www.youtube.com/watch?v=2-SPH9hIKT8
[715]2023 年的 800 多期 Python 演讲视频: https://docs.google.com/spreadsheets/d/14zNPyGNMDt7ejEHM6c8WpK4hfbmPJmbP1e4N3vM87A8
[716]教程:使用 Python + HTMX + Tailwind 作 Web 开发: https://www.youtube.com/watch?v=YUoflPpVLjQ
[717]core.py: http://core.py/
[718]Ep 10:开发者聊 Python 3.13 的 REPL: https://podcasters.spotify.com/pod/show/corepy/episodes/Episode-10-The-Interactive-REPL-e2j788i/a-ab7uiak
[719]The Python Show 40 - 与 Antonio Cuni 一起聊开源开发: https://www.pythonshow.com/p/40-open-source-development-with-antonio
[720]你最喜欢的有关 Python 的 YouTube 频道是什么?: https://www.reddit.com/r/learnpython/comments/1cyeyp8/what_is_your_favorite_pythonrelated_youtube/
[721]PyCon 2024 现场录制的播客: https://podcasters.spotify.com/pod/show/corepy/episodes/Episode-11-Live-from-PyCon-2024-e2k75mc
[722]图灵奖得主巡礼系列播客,已更新 15 期: https://liuyandong.com/archives/category/podcast
[723]PyCon US 2024 演讲视频列表: https://www.youtube.com/playlist?list=PL2Uw4_HvXqvYhjub9bw4uDAmNtprgAvlJ
[724]PyCon Sweden 2024 演讲视频: https://www.youtube.com/@PyConSweden/videos
[725]为什么 Python 会有.venv 虚拟环境的概念?: https://www.v2ex.com/t/1007645
[726]Java 如何调用含有第三方依赖的 Python 项目?: https://www.v2ex.com/t/1003544
[727]Python on Mobile: State of the Union: https://pyfound.blogspot.com/2023/05/the-python-language-summit-2023-python.html
[728]为什么我不推荐写所谓的 main 函数?: https://pythoncat.top/posts/2020-06-03-main
[729]“降临节日历”系列文章: https://www.b-list.org/weblog/
[730]faster-whisper:使用 CTranslate2 作更快的 Whisper 转录: https://github.com/SYSTRAN/faster-whisper
[731]Reclaiming the Web with a Personal Reader: https://olano.dev/2023-12-12-reclaiming-the-web-with-a-personal-reader/
[732]Flask 已死,FastAPI 永生: https://greyli.com/flask-fastapi-2023/
[733]理性参与讨论《Flask 已死,FastAPI 永生》: https://zhuanlan.zhihu.com/p/673847164
[734]数据兔子洞:爱丽丝从 Pandas 到 DuckDB 仙境的冒险: https://dev.to/proteusiq/down-the-data-rabbit-hole-alices-adventure-from-pandas-to-duckdb-wonderland-25h0
[735]PEP-3141--数字的类型层级: https://github.com/chinesehuazhou/peps-cn/blob/master/StandardsTrack/3141--%E6%95%B0%E5%AD%97%E7%9A%84%E7%B1%BB%E5%9E%8B%E5%B1%82%E7%BA%A7.md
[736]ByteTalk 3. 跟图拉鼎聊聊独立开发者的那些事: https://www.xiaoyuzhoufm.com/episode/618c9897fad86a854205b2a0
[737]Fortran 社区的讨论: https://fortran-lang.discourse.group/t/the-counter-intuitive-rise-of-python-in-scientific-computing/469
[738]Polars 实用教程: https://pbpython.com/polars-intro.html
[739]用 SQL 求解魔方: https://explainextended.com/2022/12/31/happy-new-year-14/
[740]用 SQL 实现量子计算机模拟器: https://explainextended.com/2021/12/31/happy-new-year-13/
[741]Python uv 中文翻译: https://pythoncat.top/posts/2024-03-05-uv
[742]Rye: a Hassle-Free Python Experience: https://www.youtube.com/watch?v=q99TYA7LnuA
[743]Rye Grows With UV: https://lucumr.pocoo.org/2024/2/15/rye-grows-with-uv/
[744]Python 及很多项目的 EOL 时间: https://endoflife.date/python
[745]谷歌、微软、Meta?谁才是 Python 最大的金主?: https://pythoncat.top/posts/2022-11-21-sponsors
[746]tox 教程: https://pythoncat.top/posts/2020-01-06-tox
[747]将指针的地狱引入 Python: https://github.com/ZeroIntensity/pointers.py
[748]uv - Python 包的下一次演变?: https://talkpython.fm/episodes/show/453/uv-the-next-evolution-in-python-packages
[749]suno 逆向工程 API: https://github.com/yihong0618/SunoSongsCreator
[750]Python 之父为什么嫌弃 lambda 匿名函数?: https://pythoncat.top/posts/2020-09-20-lambda
[751]Google 内部专注于代码质量的“Code Health”系列: https://testing.googleblog.com/2024/03/whats-in-name.html
[752]RSS 预览美化: https://pythoncat.top/rss.xml
[753]开发编程语言的十年: https://yorickpeterse.com/articles/a-decade-of-developing-a-programming-language/
[754]通过 for 循环,比较 Python 与 Ruby 编程思想的差别: https://pythoncat.top/posts/2021-11-23-ruby
[755]编程语言的四种错误处理方法: https://pythoncat.top/posts/2023-05-08-error
[756]两种风格的错误处理: https://frostming.com/error-handling/
[757]将 Python 错误作为值:比较 Go 和 Rust 的使用模式: https://www.inngest.com/blog/python-errors-as-values
[758]Python 为什么不用分号作终止符?: https://pythoncat.top/posts/2020-05-27-semicolons
[759]h2:HTTP/2 协议栈的纯 Python 实现: https://github.com/python-hyper/h2
[760]Tkinter-Designer: https://github.com/ParthJadhav/Tkinter-Designer
[761]使用 Python + HTMX + Tailwind 作 Web 开发: https://pythonbynight.com/talks/web-development-python-backed-frontend-featuring-htmx-tailwind
[762]What's New In Python 3.13: https://docs.python.org/zh-cn/3.13/whatsnew/3.13.html
[763]翻译:ython Asyncio 工作原理:从零实现一个简化版 Asyncio: https://juejin.cn/post/7366945260792447014
[764]chinese-calendar: https://github.com/overtrue/chinese-calendar
[765]对比最流行的 6 个 Python 日志记录库: https://betterstack.com/community/guides/logging/best-python-logging-libraries/
[766]提名高天为 Python 核心开发者: https://discuss.python.org/t/vote-to-promote-tian-gao/53895
[767]Python 中 -m 的典型用法、原理解析与发展演变: https://pythoncat.top/posts/2019-11-10-m
[768]Python 已经支持中文变量名啦!: https://pythoncat.top/posts/2021-01-13-books
[769]NumPy 2.0.0 Release Notes: https://github.com/numpy/numpy/releases/tag/v2.0.0
[770]Polars vs. pandas:有什么区别?: https://blog.jetbrains.com/pycharm/2024/07/polars-vs-pandas/
[771]Python 论坛的详细讨论: https://discuss.python.org/t/handling-incompatibilities-with-app-store-review-processes/56011/1
[772]翻译:Python 的包管理工具真是多啊: https://juejin.cn/post/7389651690306338857
[773]如何上手最新的 CPython JIT?: https://jeff.glass/post/try-cpython-jit/
如果你正在寻找优质的Python文章和项目,我必须向你推荐🎁Python潮流周刊🎁!
它精选全网的优秀文章、教程、开源项目、软件工具、播客、视频、热门话题等丰富内容,让你紧跟技术最前沿,获取最新的第一手学习资料!
欢迎点击下方图片,了解这份全世界知识密度最高、知识广度最大的 Python 技术周刊。