自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 无线通信网络拓扑推理多径效应影响实验

本文提出了一种基于图卷积网络的无线通信网络电磁信号分析方法。针对多径传输效应,作者设计了包含两个GCN层的网络模型,实现对信号特征的提取和分类。实验采用30组不同偏差程度的仿真数据,通过阈值优化和交叉验证评估模型性能。结果显示,该方法能够有效识别多径效应影响下的信号特征,平均准确率达到较好水平。研究为无线通信网络的信号处理提供了新的技术思路,相关实验数据可参考作者另一篇博客。

2025-06-19 20:31:36 53

原创 不同程度多径效应影响下的无线通信网络电磁信号仿真数据生成程序

摘要:本文介绍了生成多径效应影响下的无线通信网络数据集的方法,包括MATLAB数据生成和Python数据处理两个部分。MATLAB代码通过调整bias值(0.1-0.9)模拟不同程度的多径效应,生成包含30个节点、100个样本的测试数据集,每个样本包含信号强度、拓扑连接关系等信息。Python代码将MATLAB数据转换为PyTorch Geometric可用格式,处理内容包括信号数据转换、正负样本索引生成等,最终保存为可用于图神经网络训练的格式。该工作为研究多径效应对无线通信网络拓扑推理的影响提供了实验数据

2025-06-19 20:28:35 106

原创 Transformer推理拓扑关系

本文提出了一种基于Transformer的无线通信网络拓扑推理方法。研究者首先构建了包含100个样本的数据集,每个样本包含30个节点的信号数据,通过拼接信号生成正负样本对。实验发现初始Transformer模型训练效果不佳,准确率在0.5附近波动。通过消融实验发现,问题出在Transformer编码器部分,改为仅使用前馈网络(FPN)和分类网络(FDN)的简化结构后模型可以正常训练。研究采用了Adam优化器和BCELoss损失函数进行模型优化,并实现了0.003的学习率和10000个epoch的训练过程。该

2025-06-18 23:44:39 86

原创 UnicodeDecodeError: ‘utf-8‘ codec can‘t decode bytes in position 1022-1023: unexpected end of data

文章摘要:该问题表现为间歇性故障,在程序停止运行后等待一段时间重新启动即可恢复正常。初步分析可能是由于程序运行时加载的文件尚未完全关闭,导致立即重新运行时引发冲突。建议检查文件加载与关闭的时序逻辑,确保文件资源释放后再进行后续操作。该现象属于典型的资源竞争问题,通过增加延时或优化资源管理机制可有效解决。

2025-06-18 21:14:02 45

原创 RuntimeError: The size of tensor a (236) must match the size of tensor b (200) at non-singleton dime

摘要:在Transformer模型的PositionalEncoding类中,发现pos_table由n_position参数初始化,但主函数初始化Transformer时未给n_position赋值导致报错。解决方法是在主函数初始化Transformer时明确指定n_position值(如n_position=250),修改后即可正常运行。错误源于位置编码表长度参数未被正确传递,通过补充参数赋值解决了这一问题。

2025-06-18 21:04:06 138

原创 用resnet进行无线通信网络拓扑推理

本文提出了一种改进的1D ResNet模型用于无线通信网络的拓扑关系推理。针对数据分布特点(0附近值多,1附近值少),作者采用最大绝对值归一化(x=x/2)替代传统的BatchNormalization,以避免方差偏小导致的问题。模型包含4个残差块(filter=4),每块采用Conv1D层和残差连接,最后接全连接层输出。实验使用30节点数据集(500个样本),80%用于训练,优化器采用Adam(lr=0.003),并设置了早停机制和模型检查点。该方案通过简化归一化操作和优化网络结构,提升了在非均衡信号数据

2025-06-17 18:21:22 211

原创 binary_crossentropy对训练不稳定的改善

摘要:在训练MobileNetV2模型时,准确率在0.5附近波动,疑似梯度消失问题。减少网络层数后训练正常,表明存在训练不稳定现象。将损失函数从均方误差(MSE)改为二元交叉熵(binary_crossentropy)后,模型性能显著提升,训练趋于稳定。这表明损失函数的选择对模型收敛至关重要,二元交叉熵更适合该分类任务。

2025-06-17 18:13:49 1128

原创 AttributeError: partially initialized module ‘charset_normalizer‘ has no attribute ‘md__mypyc‘

摘要:运行Python程序时出现错误,主要原因是无法加载CUDA动态库'cudart64_101.dll',表明当前的CUDA版本与TensorFlow要求不匹配。错误信息显示程序在尝试导入TensorFlow模块时失败,最终导致charset_normalizer模块的循环导入问题。解决方案是根据博客中的CUDA环境切换方法,将CUDA版本调整为与TensorFlow版本兼容的配置。

2025-06-14 23:06:10 393

原创 拓扑推理:把邻接矩阵和节点特征形式数据集转换为可以训练CNN等序列模型的数据集

摘要:本文介绍了一种将图结构数据转换为适用于CNN等序列模型的预处理方法。原始数据包含1000个30节点图的节点特征(Signals)、邻接矩阵(Tp)和关系列表(Tp_list)。为实现节点关系预测,该方法将每对节点的特征拼接为2L长度的向量,并平衡正负样本数量。通过遍历所有节点对,生成的特征矩阵x和标签y可用于训练一维CNN或RNN模型进行拓扑推理。程序实现了数据维度调整、正负样本采样及特征拼接等关键步骤,最终输出符合序列模型输入要求的数据格式。

2025-06-14 22:59:18 345

原创 无线通信网络拓扑推理采样率实验(对比测试)

更好的方法是先生成多个样本,再对这些样本进行降采样,这样就对样本进行了控制,噪声、拓扑、幅值不变,只让采样率变化,实现严格的控制变量。先对波形进行采样,再随机生成多个样本,这样很难测试出采样率对拓扑推理准确率的影响,因为噪声、拓扑、幅值等都是变化的。

2025-06-11 09:34:15 176

原创 无线通信网络拓扑推理采样率实验(数据生成)

测试信号采样率对无线通信网络拓扑推理的效果(数据生成)

2025-06-11 09:22:30 534

原创 图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用

图注意力卷积神经网络GAT在无线通信网络拓扑推理中的应用。如果已经编写好了GCN的程序,改写GAT的程序是很方便的,torch_geometric.nn下既有一般图神经网络GCNConv包,也有图注意力神经网络GATConv包。

2025-06-10 15:20:16 179

原创 PyG测试GCN无线通信网络拓扑推理方法时间复杂度

PyG测试GCN无线通信网络拓扑推理方法时间复杂度

2025-06-09 22:39:33 346

原创 PyG遍历生成20节点到500节点的大规模无线通信网络拓扑推理数据

本文介绍了一个将MATLAB生成的无线通信网络拓扑数据(.mat格式)转换为PyTorch Geometric图数据格式的程序。程序通过自定义graph_data类继承InMemoryDataset,实现了数据加载、处理与保存功能。主要步骤包括:读取MATLAB文件中的信号数据(signals)和拓扑连接数据(tp_list),转换为PyTorch张量;生成正负样本边索引和标签;添加复杂度测试数据;最后保存为PyG可用的.pt文件。程序批量处理了20到500个节点规模的网络数据......

2025-06-09 10:35:49 1451

原创 MATLAB遍历生成20到1000个节点的无线通信网络拓扑推理数据

MATLAB遍历生成20到1000个节点的无线通信网络拓扑推理数据,包括网络拓扑和每个节点发射的电磁信号,采样率1MHz/3000,信号时长5.7s,单帧数据波形为实采

2025-06-08 22:40:43 452

原创 MATLAB生成大规模无线通信网络拓扑(任意节点数量)

MATLAB生成任意节点数量的网络拓扑,符合现实世界节点空间分布和连接规律

2025-06-08 22:22:12 630

原创 PPT里如何互换两张图片的位置

PPT图片互换位置技巧:虽然PPT没有直接互换功能,但可通过组合、翻转实现。操作步骤:1)先将需要互换的图片组合;2)对组合进行水平或垂直翻转;3)取消组合后单独调整位置。这种方法简单有效,可快速实现图片位置对调。

2025-06-06 10:46:46 200

原创 MATLAB仿真生成无线通信网络拓扑推理数据集

本文介绍了一套用于生成不同规模无线网络拓扑数据集(20、30、40、50节点)的MATLAB程序。程序采用层次化生长模型构建网络拓扑:从中心节点开始,逐层向外扩展各层级节点,并通过最小距离原则建立连接。核心功能包括: 生成不同信噪比(SNR)的模拟信号数据 实现节点功率配置和随机响应 包含四种节点规模(20-50节点)的拓扑生成函数 支持添加环形连接增强网络连通性 输出包含拓扑矩阵、连接列表和节点信号的完整数据集 各拓扑生成函数采用统一的架构,通过调整层级节点数量实现不同规模网络的构建......

2025-06-03 21:31:33 339

原创 Torch Geometric GCN训练心得

本文探讨了直推式图卷积神经网络(GCN)训练中的参数量控制问题。作者发现当网络规模为30个节点时,原始大参数量模型(2000-500)难以收敛,而降低参数量至500-100后训练效果改善。实验表明,在直推式学习中,由于每次训练仅针对一个样本,过大的模型参数量会导致训练困难,这与VC维理论强调的模型复杂度与样本量匹配原则一致。有趣的是,作者还观察到随机置零10%节点特征反而有助于训练,暗示数据缺失可能带来正则化效果。这些发现为直推式GCN的参数设计提供了重要参考。

2025-06-02 19:22:11 376

原创 RuntimeError: Can‘t call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

摘要:文章讲述了解决报错问题的方法,建议在报错函数前添加装饰器,这样既解决了问题又便于追踪改动。虽然也可根据报错提示直接修改代码,但前者方法更直观便捷,能清晰呈现修改位置。经测试,添加装饰器后程序运行正常。该方法突出了代码修改的可视化和可维护性优势。

2025-06-01 17:31:37 198

原创 pycharm打印时不换行,方便对比观察

优化PyTorch打印设置:使用torch.set_printoptions(linewidth=200)可调整输出格式,使长数据更易阅读。该设置扩展示例显示宽度,适合调试时查看完整内容。

2025-06-01 11:03:59 373

原创 Torch Geometric环境下无线通信网络拓扑推理节点数据缺失实验

《基于GCN的无线通信网络拓扑推理与缺失数据实验研究》 摘要:本文提出了一种用于无线通信网络拓扑推理的图卷积神经网络方法,并重点研究了数据缺失情况下的性能表现。实验采用30节点网络模型,生成200组样本数据,通过在信号数据中随机设置不同比例(10%-90%)的缺失块来模拟数据残缺情况。方法包含两个核心模块:gcn_dataset_incomplete.py负责生成带有随机缺失的数据集,gcn_erase_test.py则用于评估模型性能。实验结果表明,该GCN模型在数据缺失情况下仍能保持较好的拓扑推理能力,

2025-05-31 10:47:45 155

原创 Pycharm import时提示“未解析的引用”

PyCharm中"未解析的引用"报错可以通过调整环境解决。删除同目录下的.idea文件夹后重新以项目形式打开.py文件,系统库的报错提示会消失。虽然自定义包可能仍会出现红色波浪线提示,但问题已大大减轻,pip安装的第三方库都不会再显示该报错。这个方法可以有效消除烦人的引用报错提示,改善开发体验。

2025-05-31 10:00:09 489

原创 Torch Geometric中Failed to initialize NumPy和‘numpy‘ has no attribute ‘typeDict‘的矛盾

摘要:文章分析了Python程序中常见的numpy版本兼容性问题及其解决方法。当出现"Failed to initialize NumPy"错误时,通常是由于numpy版本过低;而"'numpy' has no attribute 'typeDict'"则表明版本过高(1.20后改用np.sctypeDict)。作者建议优先通过版本调整解决兼容性问题,而非修改包内容。文章还展示了处理h5py、torch_geometric和numpy之间版本冲突的实际案例,包括将np

2025-05-30 22:39:33 836

原创 Pytorch Geometric官方例程pytorch_geometric/examples/link_pred.py环境安装教程及图数据集制作

摘要:本文澄清了图数据不能用CUDA加速的误区,指出图数据以张量形式存在,完全支持CUDA并行计算。作者分享了成功运行GCN模型的环境配置,包括关键包版本(torch 2.4.1、torch-geometric 2.3.1等)和CUDA 11.8的安装注意事项,强调需先装CUDA再装GPU版torch。同时提到解决numpy和pandas版本冲突的经验,并提供了CUDA版本切换的参考文章链接。(149字)

2025-05-30 15:34:14 1231

原创 python h5py 读取mat文件的<HDF5 object reference> 问题

摘要:Python中使用h5py加载MATLAB的.mat文件时,处理double类型数据可直接读取,但cell类型数据需要特殊处理。通过h5py.File加载文件后,对cell数组元素需使用数组索引方式(如mat_file[Tp_list[0,k]])提取具体内容,否则会得到不可直接使用的HDF5对象引用。这种方法解决了cell类型数据访问不便的问题,使得MATLAB复合数据类型能在Python中正常使用。

2025-05-29 21:43:40 307

原创 统计图中节点特征的余弦相似度、欧式距离

本文介绍了一个统计通信网络节点余弦相似度的程序。程序读取包含200个样本的.mat文件,分别计算有连接关系节点和无连接关系节点的余弦相似度,并将其保存到两个列表中。通过随机采样确保两类数据量相同后,将结果整理为DataFrame格式,包含大类(SNR值)、小类(关系标识)和相似度值三列,最后导出为Excel文件以便用Origin绘图。该程序实现了对网络拓扑节点关系的相似度统计分析,为后续可视化研究提供了数据支持。

2025-05-29 10:41:02 233

原创 PPT连同备注页(演讲者模式)一块转为PDF

本文介绍了两种将PPT备注导出为PDF的方法对比。第一种方法是选择"发布内容-备注页"选项并进行页面裁剪,可成功导出包含备注的PDF;第二种方法仅勾选"包含备注"选项则无法导出备注内容,效果与直接导出PDF相同。实验表明,必须选择"备注页"选项才能确保备注被正确导出。

2025-05-25 14:08:35 726

原创 YOLOv3,YOLOv7,YOLOv8,YOLOv10目标检测结果y,height误差和召回率便捷计算程序

用预测结果去匹配真值框,误差最小的那个认为是预测结果应该对应的真值框。当然,如果预测结果偏离非常大,可以加一个阈值,大于这个阈值,这个预测结果的误差就不去算了。YOLO的pytorch、tensorflow等可能有eval、test这些模块,但是我这个比较直接、简单明了,大家很容易看明白,二次开发。除了y,height误差和召回率,其他的x,weight,准确率、精度也是类似的,顶多改几句话就行。调用模型predict(detect)指定文件夹下面图片,同时,调数据集标签,计算出误差。

2025-05-23 21:20:12 301

原创 根据YOLO数据集标签计算检测框内目标面积占比(YOLO7-10都适用)

该程序用于计算时频图中信号面积与检测框面积的比值,并将结果保存为Excel文件,以便后续绘制论文实验图。程序首先定义了标签文件和图像文件的路径,并确保输出目录存在。通过读取标签文件,程序解析每个检测框的类别、中心坐标和尺寸,并将其转换为像素值。接着,程序从图像中提取检测框区域,进行二值化处理,并计算信号面积与检测框面积的比值。根据类别ID,程序将结果分别存储在不同的列表中。最后,程序将所有结果保存为Excel文件,并生成二值化图像以供进一步分析。该程序适用于多信号参数估计的实验数据处理,能够有效支持论文中的

2025-05-23 20:35:28 251

原创 玩转YOLOv10 多尺度多通道特征图

在YOLOv10的AutoBackend类的forward函数中,用户通过添加自定义代码实现了特征图的保存和可视化功能。具体包括三个部分:1)通过设置activate_state=1,可以保存特征图的激活情况,并计算不同通道的平均值;2)通过设置save_feature_map=1,可以保存多尺度(80x80、40x40、20x20)的特征图,并将其保存为图片文件;3)通过设置big_feature_map=1,可以将不同尺度的特征图拼接为一张长图,并保存为高分辨率图片。

2025-05-18 10:28:56 345

原创 怎么用Origin画出MATLAB效果的3D时频图

MATLAB画3D时频图的效果比Origin差远了....但用Origin去画MATLAB需要一些过程本帖让你轻轻松松把MATLAB的时频图搬移到Origin中,然后拥有高级视图的3D时频图,并且可以随心调整格式。

2025-05-17 10:12:08 537

原创 语句逻辑梳理

修改前的结构:场景修饰(在非合作场景中)+主(对信号进行参数估计)+谓(是)+宾(频谱管理的重要前提)修改后:主(对非合作场景中的信号进行参数估计)+谓(是)+宾(频谱管理的重要前提)在非合作场景中对信号进行参数估计是频谱管理的重要前提。对非合作场景中的信号进行参数估计是频谱管理的重要前提。

2025-05-16 15:29:55 78

原创 YOLOv7训练时4个类别只出2个类别

在使用YOLOv7进行训练和预测时,发现模型仅能预测出两个类别(LFM和SFM),而实际应有四个类别。经过检查,特征图大小和anchors设置均与YOLOv3一致,且YOLOv3表现正常。最终发现问题可能出在detect.py中的conf-thres参数设置过高,将其从0.5调整为0.1后,问题得到解决。此外,还需注意在NMS操作时不使用classes参数,并在train.py中根据实际类别数和图片大小调整hyp['cls']和hyp['obj']的缩放比例。这些调整有助于确保模型能够正确预测所有类别。

2025-05-16 14:49:58 1201

原创 YOLOv3模型直接预测的框(未做NMS)是怎么来的

get_anchors_and_decode()函数是YOLOv3模型中用于解码预测框的关键部分。该函数处理三个不同尺度的特征图(13x13、26x26、52x52),每个特征图的每个网格都对应一个预测框,包含中心坐标(x, y)和宽高(w, h)。函数通过预定义的9种锚框(anchors)来调整预测框的宽高,并输出调整后的框坐标、置信度和类别概率。具体步骤包括:1)生成网格坐标;2)将锚框扩展到每个网格;3)解码预测框的中心坐标和宽高,并进行归一化;4)计算预测框的置信度和类别概率。

2025-05-15 14:51:38 200

原创 Tensorflow 2.X Debug中的Tensor.numpy问题 @tf.function

在调试YOLOv3模型时,若想查看get_pred函数下get_anchors_and_decode函数中grid_shape的具体数值,直接打印grid_shape只能显示其Tensor属性,无法获取实际数值。使用grid_shape.numpy()会报错,因为get_pred函数通过@tf.function装饰器调用,该装饰器用于加速程序运行,但会限制对Tensor的直接操作。为了调试方便,可以去掉@tf.function装饰器,这样在调用get_anchors_and_decode函数时,便可以通过g

2025-05-15 11:33:18 360

原创 用python把YOLOv3的anchors画出来观察

该程序用于可视化YOLOv3模型中的锚框(anchors)。通过定义锚框的尺寸和颜色,程序在416x416的图像上绘制每个锚框,并将其保存为PNG格式的图像文件。锚框的尺寸分别为[10,13]、[16,30]、[33,23]、[30,61]、[62,45]、[59,119]、[116,90]、[156,198]、[373,326],并使用红、绿、蓝三种颜色进行区分。程序首先创建保存图像的文件夹,然后依次绘制每个锚框,并将其居中放置在图像中。最终,所有生成的图像保存在指定文件夹中,并输出保存路径的提示信息。

2025-05-15 10:15:37 223

原创 YOLOv3标签框检查python程序

本文介绍了一个用于检查YOLOv3标签文件(txt格式)是否正确的Python程序check_labels.py。该程序通过读取标签文件中的图像路径和边界框信息,将边界框绘制在对应的图像上,并保存带框的图像到指定目录。程序使用OpenCV库加载图像并绘制矩形框,确保标签转换后的准确性。通过这种方式,用户可以直观地检查YOLOv10标签转换为YOLOv3标签后的结果是否正确。程序还提供了示例路径,用户可以根据需要替换为自己的标签文件路径和输出目录。

2025-05-14 15:16:18 177

原创 YOLOv3, YOLOv7, YOLOv10的CUDA环境及便捷切换方法

YOLOv10、YOLOv7和YOLOv3的依赖环境有所不同。YOLOv10和YOLOv7基于PyTorch,推荐使用CUDA 11.7版本,而YOLOv3基于TensorFlow 2.2.0,需使用CUDA 10.1版本。切换CUDA版本时,需修改系统变量CUDA_PATH和PATH中的相关路径,并重启电脑以生效。此外,cuDNN的版本需与CUDA版本对应,可从NVIDIA官网下载。这些步骤确保了不同YOLO版本在GPU上的兼容性和性能优化。

2025-05-13 21:18:39 944

原创 YOLOv10的标签转YOLOv3的标签

该Python程序YOLOv10_label_to_YOLOv3_label.py用于将YOLOv10格式的标签文件转换为YOLOv3格式,并将所有转换后的标签整合到一个文件中。程序首先遍历指定文件夹下的所有txt文件,读取每个文件中的标签数据。YOLOv10的标签格式为类别 x_center y_center width height,其中坐标和尺寸是相对于图片宽高的比例。程序将这些比例转换为绝对坐标,并重新组织为YOLOv3的格式x_min y_min x_max y_max 类别......

2025-05-13 21:12:15 309

哈尔滨工程大学A类期刊投稿情况统计(信通学科,截止至2024年)

自己调研了下A类期刊投稿情况,顺便整理成压缩包仅供参考

2024-12-12

生活常用无线电频段分布瀑布图的visio图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G)

生活常用无线电频段分布瀑布图的visio图(航空、海事、业余、民用、700M、1.8G、2.1G、2.4G) 瀑布图是自己在工位采集数据软件绘制的,标注是自己根据网上的信息整理的。如要转发使用请标明出处。允许二次创作

2024-06-07

dcs进行飞行模拟,tacview记录的航迹数据集,总共100条,包括直线、加速、水平转弯及爬升转弯

dcs进行飞行模拟,tacview记录的航迹数据集,总共100条,包括直线、加速、水平转弯及爬升转弯,包含.acmi格式,部分已转换为.csv格式,可用excel查看

2023-05-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除