69. Sqrt(x)

Implement int sqrt(int x).

Compute and return the square root of x.

x is guaranteed to be a non-negative integer.
Example 1:

Input: 4
Output: 2

Example 2:

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842…, and since we want to return an integer, the decimal part will be truncated.
这道题目是二分法的一个经典运用,不妨设我们要找的答案为Ans,那么显然有0<=Ans<=x。即我们得到了这样一个区间[0, x],答案一定在其中。

但是如果对于这个区间中的每一个元素都一次进行判断的话,显然是会超时的,所以我们需要想一些办法来减少不必要的计算。

不妨设m为这个区间的中点,即m=(0+x+1)/2,然后讨论m^2与x的关系:

如果m^2<=x,那么对于所有小于m的数来说,都不可能成为答案,即答案一定在[m,x]中
如果m^2>x,那么对于所有大于等于m的数来说,都不可能成为答案,即答案一定在[0, m-1]中
这样一下就去掉了一半的可能性,减少了相当多的运算,同时,这样的判断可以继续下去:

如果确定当前的答案一定在区间[l, r]中,那么我们取该区间的中点m=(l+r+1)/2,

如果m^2<=x,那么对于所有小于m的数来说,都不可能成为答案,即答案一定在[m,r]中
如果m^2>x,那么对于所有大于等于m的数来说,都不可能成为答案,即答案一定在[l, m-1]中
这样,每次都去掉一半的可能性,重复log(n)次后,区间里一定只剩下一个数,这就是我们想要求的答案。同时,我们总共只计算了O(log(n))次,并且每次计算都是O(1)的,所以最后的时间复杂度也就是O(log(n))。

这道题目是对于二分法的经典考察,题目的关键在于取中间数来进行判断,从而每次去掉一半的可能性,这对题目的性质存在一定要求(即单调性),在使用的时候需要注意。
https://www.tianmaying.com/tutorial/LC69

class Solution {
public:
    int mySqrt(int x) {
        // 初始问题
        int l = 0, r = x;
        // 当区间长度>1时不断重复
        while (l < r) {
            // 取中位数来进行判断
            long long mid = (l + r + 1) / 2;
            // 根据结果去掉不可能成为答案的一部分
            if (mid * mid <= x) {
                l = mid;
            }
            else {
                r = mid - 1;
            }
        }
        // 返回最后的答案
        return l;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值