分解质因数

大数的质因数分解一直以来是亟需解决的难题。本文从最基本的试除法开始,探讨分解质因数的方法。

下面的程序在开头定义了一个宏OPT,如果删掉这个定义,就可以运行最原始的算法。

一、朴素算法

#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
#define OPT

int main()
{
    int n;
    for (int num=10000;num<=110000;++num)
    {
        n=num;
        printf("%d=",num);
        #ifndef OPT
        for (int i=2;i<=sqrt(n);)
        {
            if (n%i==0){
                printf("%d ",i);
                n/=i;
            }
            else{
                ++i;
            }
        }
        printf("%d\n",n);
        #endif // OPT

        #ifdef OPT
        //6n+1  6n+5
        //deal with number <=5 first
        for (int i=2;i<=5;)
        {
            if (n%i==0){
                printf("%d ",i);
                n/=i;
            }
            else
                ++i;
        }

        for (int k=1;(6*k+5)<=sqrt(n);)
        {
            while (n%(6*k+1)==0)
            {
                printf("%d ",6*k+1);
                n/=(6*k+1);
            }
            while (n%(6*k+5)==0)
            {
                printf("%d ",6*k+5);
                n/=(6*k+5);
            }
            ++k;
        }
        if (n!=1)
            printf("%d\n",n);
        else
            printf("\n");
        #endif // OPT
    }
    return 0;
}

在上段代码中,核心代码为:

        for (int i=2;i<=sqrt(n);)
        {
            if (n%i==0){
                printf("%d ",i);
                n/=i;
            }
            else{
                ++i;
            }
        }
        printf("%d\n",n);
i为进行尝试的质因子,这里并不需要判断i是否为质数,因为i若是合数,并且满足n%i==0,那么i的质因子在i的前面肯定出现过,其质因子一定已经作为n的质因子除过了,所以也就不会再出现这样一个合数i

以100=2*2*5*5为例,不必要担心4也是100的约数而被误作为质因子。因为100在连续两次除以2后等于25,25是没有4这个因子的。

还有一点需要注意的是最后一行:

        printf("%d\n",n);

不能删去,根据我们的程序,算法结束时的n刚好是最后一个质因子。


二、优化尝试(一)

以上代码的时间复杂度为O( sqrt(n) ),在寻找较大的质因子时,需要以1为步长加上去,这还是比较消耗时间的。

考虑这样的一个数列6n,  6n+1,  6n+2,  6n+3,  6n+4,  6n+5,  其中6n, 6n+2, 6n+3, 6n+4, 都明显地有2, 3等约数,不可能是约数。只有形如6n+1,6n+5的数,才有可能有约数。利用这种思路,我认为可以做到一个常数上的小优化。在开头给出的程序中,宏OPT指明的程序段就是用这种思想编写的。

但是实际测试并非如此,实际测试中,对1万到11万的数进行分解,朴素算法是22.033秒,而所谓的优化算法时间为41.645s,几乎慢了一倍。

可能的原因是我的“优化”写得太复杂了吧。让我进一步挖掘一下。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值