大数的质因数分解一直以来是亟需解决的难题。本文从最基本的试除法开始,探讨分解质因数的方法。
下面的程序在开头定义了一个宏OPT,如果删掉这个定义,就可以运行最原始的算法。
一、朴素算法
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
#define OPT
int main()
{
int n;
for (int num=10000;num<=110000;++num)
{
n=num;
printf("%d=",num);
#ifndef OPT
for (int i=2;i<=sqrt(n);)
{
if (n%i==0){
printf("%d ",i);
n/=i;
}
else{
++i;
}
}
printf("%d\n",n);
#endif // OPT
#ifdef OPT
//6n+1 6n+5
//deal with number <=5 first
for (int i=2;i<=5;)
{
if (n%i==0){
printf("%d ",i);
n/=i;
}
else
++i;
}
for (int k=1;(6*k+5)<=sqrt(n);)
{
while (n%(6*k+1)==0)
{
printf("%d ",6*k+1);
n/=(6*k+1);
}
while (n%(6*k+5)==0)
{
printf("%d ",6*k+5);
n/=(6*k+5);
}
++k;
}
if (n!=1)
printf("%d\n",n);
else
printf("\n");
#endif // OPT
}
return 0;
}
在上段代码中,核心代码为:
for (int i=2;i<=sqrt(n);)
{
if (n%i==0){
printf("%d ",i);
n/=i;
}
else{
++i;
}
}
printf("%d\n",n);
i为进行尝试的质因子,这里并不需要判断i是否为质数,因为i若是合数,并且满足n%i==0,那么i的质因子在i的前面肯定出现过,其质因子一定已经作为n的质因子除过了,所以也就不会再出现这样一个合数i
以100=2*2*5*5为例,不必要担心4也是100的约数而被误作为质因子。因为100在连续两次除以2后等于25,25是没有4这个因子的。
还有一点需要注意的是最后一行:
printf("%d\n",n);
不能删去,根据我们的程序,算法结束时的n刚好是最后一个质因子。
二、优化尝试(一)
以上代码的时间复杂度为O( sqrt(n) ),在寻找较大的质因子时,需要以1为步长加上去,这还是比较消耗时间的。
考虑这样的一个数列6n, 6n+1, 6n+2, 6n+3, 6n+4, 6n+5, 其中6n, 6n+2, 6n+3, 6n+4, 都明显地有2, 3等约数,不可能是约数。只有形如6n+1,6n+5的数,才有可能有约数。利用这种思路,我认为可以做到一个常数上的小优化。在开头给出的程序中,宏OPT指明的程序段就是用这种思想编写的。
但是实际测试并非如此,实际测试中,对1万到11万的数进行分解,朴素算法是22.033秒,而所谓的优化算法时间为41.645s,几乎慢了一倍。
可能的原因是我的“优化”写得太复杂了吧。让我进一步挖掘一下。