会议室温度变化
一、概述与背景分析
常用于拟合温度变化模型的有线性回归和非线性回归组合模型,由于会议室的温度在很多时候都是随机的、非线性的变化,所以显然线性回归模型并不是很适合。
目前业界比较多的是用BP神经网络模型拟合会议室温度变化,但是RBF神经网络结构更简单,而且在逼近能力和训练速度都有良好的性能,因此在业内也越来越流行。
BP神经网络 | RBF神经网络 |
1、 实行权连接,而RBF神经网络输入层到隐层单元之间为直接连接,隐层到输出层实行权连接。 2、隐层单元的转移函数一般选择非线性函数(如反正切函数) 3、隐层和隐层节点数不容易确定,一旦网络的结构确定下来,在训练阶段网络结构将不再变化 4、易限于局部极小值,学习过程收敛速度慢,隐层和隐层节点数难以确定 | 1、 输入层到隐层单元之间为直接连接,隐层到输出层实行权连接。 2、 隐层单元的转移函数是关于中心对称的RBF(如高斯函数) 3、 隐层单元数在训练阶段自适应地调整 4、 动态确定网络结构和隐层单元的数据中心和扩展常数,学习速度快,可并行高速地处理数据 |
(BP神经网络和RBF神经网络的差异)
二、解决方案
1、找出对会议室温度的影响因子
着重分析会议室内没有供热和其他设备散热以及人体散热的情况,主要的影响因子:室外温度,太阳辐射强度,风速,室内相对湿度,建筑材料,会议室的通风情况。
2、筛选影响因子,提取主要影响因子
由于会议室已经固定,即建筑材料和通风情况不变,可以剔除(或通过PCA,信息增益等方式筛选);选取室外温度,太阳辐射强度,风速,室内相对湿度为输入变量。考虑到气象因子采集的延迟,把采集时刻也包含在内。
3、数据提取
连续10天(根据条件增加)每10分钟采集一组影响因子和会议室的温度,得到有效数据1440条并对数据进行归一化变换。
得到以下记录表
时间 | 室外温度 | 辐射强度 | 风速 | 室内相对湿度 | 室内温度 |
|
|
|
|
|
|
|
|
|
|
|
|
4、实验方案
1、把1440条数据平均分成A, B两组,A组训练,B组测试
2、对于RBF和BP神经网络,首先用A组数据的时间,室外温度,太阳辐射强度,风速,室内相对湿度作为输入量,A组的会议室温度作为目标值进行训练,获得会议室的温度模型。
3、用B组数据的时间,室外温度,太阳辐射强度,风速,室内相对湿度作为输入量,模型会输出预测的结果。
4、将模型输出的预测结果与实际的会议室温度值进行对比,画出各模型的时刻方差图,比较两种模型的效果。
5、选取均方差最小的模型作为描述会议室温度变化的模型
5、技术难点
1、数据难以每次都能准确采集
2、特征值选择的合理性
3、不同算法模型的调试
三、项目人员配置
1、项目主管(1个)
是项目中人、财、物、技术、信息和管理等所有生产要素的组织管理人,把控整个项目的执行进度。
2、技术人员(2个)
把控数据采集的质量,指定数据采集规则,分析采集数据,寻找技术方案,并实现算法模型的训练,得到能正确描述会议室温度变化的模型。
3、数据采集人员(1个)
主要负责实验数据的采集,整理和智能采集机器的维护。
四、项目时间节点
总时间:48天
五、资金预算
1、设备购置费:11286元
设备 | 单价(人民币) | 数量 | 总价格 |
高精度温度传感器 | 480 | 6 | 2880 |
太阳辐射传感器 | 2222 | 3 | 6666 |
风速风向传感器 | 400 | 3 | 1200 |
湿度传感器 | 180 | 3 | 540 |
2、劳务费:101200
人员 | 工资(元/人日) | 人数 | 工作日 | 总价格 |
项目经理 | 700 | 1 | 48 | 33600 |
技术人员 | 600 | 2 | 48 | 57600 |
采集人员 | 500 | 1 | 20 | 10000 |
3、其他费用:5000
传感器的二次开发,运算服务器,电费,水费等
综上,申请资金为:11286 + 101200 + 5000 = 117486
六、预期效果
利用外部的气象因素和时间序列对会议室温度进行建模,模型基本上能拟合会议室的温度变化趋势,并且对预测会议室下一时刻的温度能有比较满意的结果。