这也算是线段树入门第一道自己完成的题目。因为在以前,看过别人写的线段树区间更新的方法,叫做延迟标记法,意思是:每次更新不需要更新到底部,换句话说:并不需要
每个元素一一更新,只有等到下次更新或被询问的时候才更新!.操作的方法就是用一个辅助数组来记录(标记)更新的信息。
我们知道线段树又叫区间树,它又是平衡二叉树。线段树的操作是用递归实现的。查找是二分搜索故时间复杂度为(logn)。它可以一个数组来表示,看下面这张图:
在用数组存的时候很注意数组的大小。认清楚数组位置中所对应的线段树的位置是帮助我们理解线段树的好方法。
本题可以用线段树和树状数组实现。
线段树:(2500ms)
#include<stdio.h>
typedef long long LL;
LL sum[400005],add[400005];
inline void PushUp(int i){
sum[i]=sum[i<<1]+sum[i<<1|1];
}
inline void PushDown(int i,int m)
{
if(add[i]){
add[i<<1|1]+=add[i];
add[i<<1]+=add[i];
sum[i<<1]+=add[i]*(m-(m>>1));
sum[i<<1|1]+=add[i]*(m>>1);
add[i]=0;
}
}
void build(int l,int r,int i)
{
add[i]=0;
if(l==r){
scanf("%lld",&sum[i]);
return ;
}
int m=(l+r)>>1;
build(l,m,i<<1);
build(m+1,r,i<<1|1);
PushUp(i);
}
inline void Update(int L,int R,int x,int l,int r,int i)
{
if(L<=l&&r<=R){
add[i]+=x;
sum[i]+=(LL)(r-l+1)*x;
return ;
}
PushDown(i,r-l+1);
int mid=(l+r)>>1;
if(L<=mid) Update(L,R,x,l,mid,i<<1);
if(mid<R) Update(L,R,x,mid+1,r,i<<1|1);
PushUp(i);
}
LL query(int L,int R,int l,int r,int i)
{
if(L<=l&&r<=R){
return sum[i];
}
PushDown(i,r-l+1);
int mid=(l+r)>>1;
LL res=0;
if(L<=mid) res+=query(L,R,l,mid,i<<1);
if(mid<R) res+=query(L,R,mid+1,r,i<<1|1);
return res;
}
int main()
{
int n,m,a,b,c;
char op[3];
while(~scanf("%d %d",&n,&m)){
build(1,n,1);
while(m--){
scanf("%s %d %d",op,&a,&b);
if(op[0]=='Q') printf("%lld\n",query(a,b,1,n,1));
else {
scanf("%d",&c);
Update(a,b,c,1,n,1);
}
}
}
return 0;
}
树状数组: 详细解释
代码:(1750ms)
#include<stdio.h>
typedef __int64 LL;
const int M=100100;
LL a[M],b[M],c[M];
int n;
inline void Update(LL *num,int i,int a){
while(i<=n){
num[i]+=a;
i+=i&-i;
}
}
inline LL query(LL *num,int i)
{
LL ret=0;
while(i>0){
ret+=num[i];
i-=i&-i;
}
return ret;
}
int main()
{
int m,i,j,x;
LL ans;
char op[3];
while(scanf("%d %d",&n,&m)!=EOF){
for(i=1;i<=n;i++){
scanf("%I64d",&a[i]);
if(i!=1) a[i]=a[i]+a[i-1];
}
while(m--){
scanf("%s %d %d",op,&i,&j);
if(op[0]=='Q'){
ans=a[j]-a[i-1]+(j+1)*query(b,j)-i*query(b,i-1)-query(c,j)+query(c,i-1);
printf("%I64d\n",ans);
}
else{
scanf("%d",&x);
Update(b,i,x);
Update(b,j+1,-x);
Update(c,i,i*x);
Update(c,j+1,-(j+1)*x);
}
}
}
return 0;
}
/* sigma(a[i])=sigma{d[i]*(x-i+1)}=sigma{d[i]*(x+1)-d[i]*i}
=(x+1)*sigma(d[i])-sigma(d[i]*i) (i....<n)
*/