TZOJ:5912
题目大意是给定一套货币系统,你能否找到小于等于n的货币种类,使得其给定的货币与你找到的货币完全等价,等价的条件是对于任何一个数字,两个货币系统都可以表示或者都不能表示才算等价。
首先我想到的是找给出的货币系统的约数,但是方向完全错了,如果找当前货币的约数的话,你给出的货币系统就无法与他给出的货币系统等价。实际上这题的目的是缩小货币系统,比如3 19 10 6这一套货币系统,其中6可以被3表示,19可以被10和3表示,所以实际上这一套货币系统只有3和10是有价值的,其余两个是可以被忽略的,因此等价于这套货币系统的货币种类最少为2.
那么,题目就变成了,排升序后的货币,第i个货币能否用前i-1个货币得到,这实际上就变成了用完全背包合成第i个货币,所以我们只需要用n个完全背包判断这些货币能否被其他货币合成就可以了
#include<bits/stdc++.h>
using namespace std;
const int N=1e2+10;
int n,a[N],bj[N];
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
memset(bj,0,sizeof(bj));
bj[1]=1;
sort(a+1,a+1+n);
int sum=1;
int dp[25000+10];
for(int i=2;i<=n;i++)
{
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int j=1;j<i;j++)
{
if(bj[j])
{
for(int p=a[j];p<=a[i];p++)
if(dp[p-a[j]])dp[p]=1;
}
}
if(!dp[a[i]])bj[i]=1,sum++;
}
cout<<sum<<endl;
}
}